

29A-

PERROVIE DELLO STATO

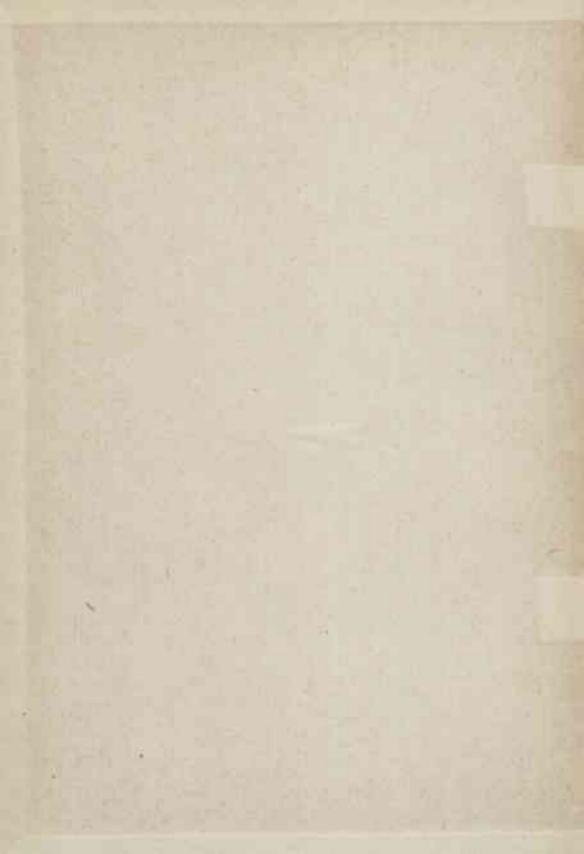
STREET SHOWS HE SHARMON

ISTRUZIONI

regli armanenti dei Linuri o pri esupepri fizzi dello eteriori

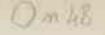
Armamanth

PARTE PRIMA


NORME OFFICE ALI

Trada in Twose

Statement Opinion 1999


WOLDSONS.

White the second

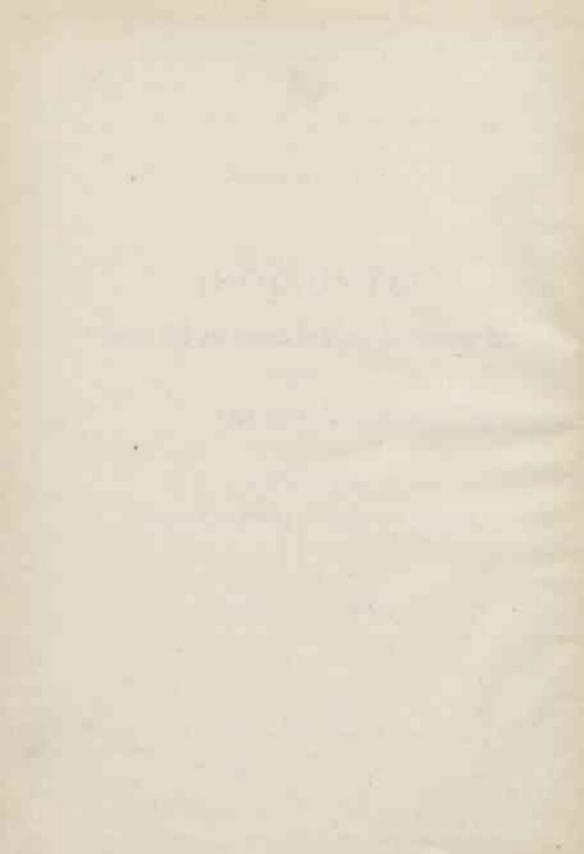
382 MM.

FERROVIE DELLO STATO

Servizio Centrale del Mantenimente

ISTRUZIONI

sugli armamenti dei binari e sui congegni fissi delle stazioni


Armamenti

PARTE PRIMA

NORME GENERALI - TESTO E TAVOLE

Bologna - Ottobre 1908

BOLOGNA STABILIMENTO GIUSEPPE CIVELLI

ISTRUZIONI SUGLI ARMAMENTI

INDICE DEI CAPITOLI

CAPITOLO L

Disposizioni relative ai binari, alla piattaforma stradale, al materiale ed agli impianti fissi in genere.

1.	Larghezze normali del binario (scartamenti) in rettifilo ed	in		
	curva; larghezza delle intervie		Pag.	13
2.	Inclinazione delle rotaie		>>	14
3.	Raccordo dello scartamento dei rettifili con quello delle curve		>>	15
4.	Sopraelevazione della rotaia esterna nelle curve	٠	>>	15
ő,	Raccordo della sopraelevazione		>>	17
6.	Raccordi parabolici		>>	18
7,	Modo di regolare la sopraelevazione della rotaia esterna media	nte		
	l'alzatraguardo		>>	20
8.	Intervallo o giuoco fra le estremità delle rotaie e modo di re			
	larlo		>>	21
9.	Impiego delle rotaie corte nelle curve		<i>>></i>	22
10.	Raccordo dei cambiamenti di livelletta		>>	23
	Passaggi a livello		>>	25
	Binari insabbiati		>>	26
	Traverse e legnami speciali, loro preparazione e conservazione)»	26
	Trasporto, accatastamento e conservazione dei materiali metali		>>	30
	Limiti di logoramento delle rotaie		>>	31
	Piattoforma stradale		>>	33
	Profili normali della massicciata		>>	34
	Sagome limiti e profili regolamentari del massimo carico .		>>	34

CAPITOLO II.

Lavori relativi all'armamento,

l.	Posa del binario	. 37
2.	Lavori speciali relativi alla posa a nuovo »	37
3.	Lavori relativi al rifacimento o rinnovamento sulla stessa sede	
	del binario esistente	39
4.	Serraglie o pezzi di chiusura per congiungere gli armamenti . »	43
5.	Congiunzione del nuovo col vecchio armamento »	44
6.	Precauzioni da prendersi e segnalazioni per la sicurezza del pas-	
	saggio dei treni	44
7.	Manutenzione dell'armamento secondo il metodo della revisione	
	generale,,	46
8.	Risanamento della massicciata	52
9,	Verifica del tracciato delle curve	54

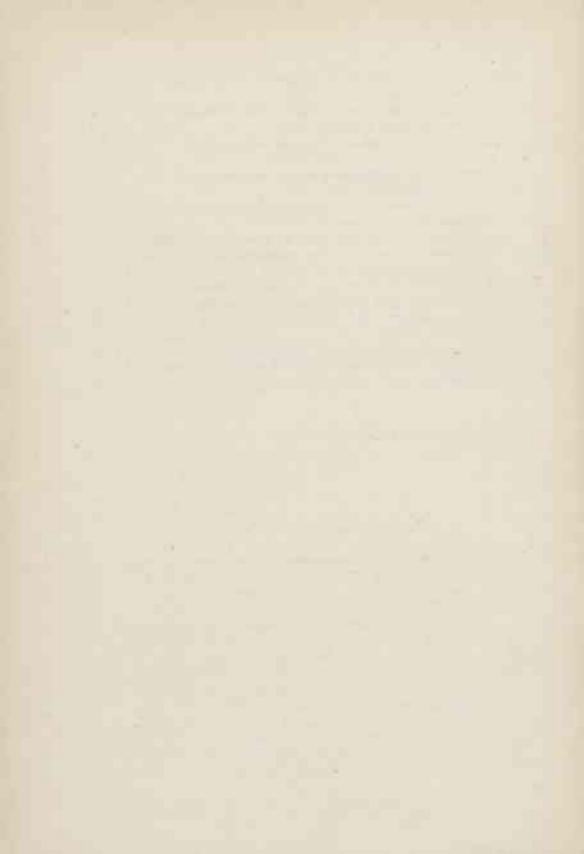
APPENDICE

1,0	Sopraelevazione della rotaia esterna nelle curve					Pag. 97
26	Raccordi parabolici					» 9.)
3"	Impiego delle rotaie corte nelle curve					» 101
4°	Tracciamento per ascisse e ordinate	٠.	-	4		» 102
5°	Tracciamento per corde e per freccie	,				» 102
60	Tracciamento per corde prolungate			4		» 102

INDICE DELLE TABELLE

N,	1.	Larghezze del binario (scartamenti) in retta ed in curva.	Pag.	59
>>	2.	Sopraelevazione della rotala esterna nello curve	»	60
≫	3,	Limiti di velocità nelle curve aventi la massima sopraeleva-		
		zione di m. 0,14	>>	61
<i>>></i>	4	Raccordi parabolici senza spostamento della curva primitiva.		
		l° caso	30-	62
>>	5.	Raccordi parabolici senza spostamento della curva primitiva.		
		2º caso	10-	64
>>	6.	Raccordi parabolici con spostamento della curva primitiva-		
		3° caso	>>	66
≫	7.	Raccordi parabolici con spostamento della curva primitiva.		
		4º caso	39:	68
X	8.	Ascisso e sopraelevazioni della rotaia esterna delle curve nei		
		raccord parabolici 1º caso	305	70
>>	9.	Ascisse e sopraelevazioni della rotaia esterna delle curve nei		
		raccordi parabolici. 2º e 3º caso	>>	71
<i>>></i>	10.	Ascisso e sopraelevazioni della rotaia esterna delle curve nei		
		raccordi parabolici, 4º caso	30	72
>>	LŁ,	Giuochi per la ditatazione delle rotaie	>>	73
<i>>></i>	12.	Armamento con rotaie normali da m. 12 e con rotaie corte da		
		m. 11,94 e da 11,88		74
*	13.	Armamento con rotaie normali da m. 9 e con rotaie corte da		
		8,945	>>	75
>>	14.	Armamento con rotaie normali da m. 9 e 6 e con rotaie corte	;	
		da m. 8,64 e 5,93	*	76
>	15.	Armamento con rotaie normali da m. 9 e 6 e con rotaie corte	<u> </u>	
		da m. 8,91 o 5.94	>>	77

N.	16.	Armamento con rotaie normali da m. 6,30 e con rotaie corte		
		da m. 6,26	ag.	78
>>	17.	Raccordo dei cambiamenti di livelletta	>>	79
*	18.	Passaggi a livello)>	80
*	19.	Inclinazione della piattaforma stradale nelle curve	>>	81
39	20.	Tracciamento delle curve per ascisse ed ordinate	39	82
>>	21.	Tracciamento delle curve per corde e per freccie per rotaie		
		di m. 6, 9 e 12	»	92
>	22.	Tracciamento delle curve per corde prolungate	>>	94


INDICE DELLE TAVOLE

- Tav. I. Calibri per gli scartamenti
 - » II. -- Raccordi parabolici.
 - » III. Idem.
 - » IV. Idem.
 - » V. Esempio di raccordo parabolico.
 - » VI. Alzatraguardo.
 - » VII. Distribuzione delle rotaie nelle curve e raccordo del cambiamenti di livelletta.
 - » VIII. Binario insabbiato ed accatastamento delle traverse.
 - » 1X. Calibri per la sabottatura e spianatura delle traverse e figure schematiche per il rincalzamento delle traverse.
 - » X. Trochitomografo.
 - » XI. Profiti della massicciata e della piattaforma stradale.
 - » XII. Sagoma limite pel servizio cumulativo.
 - XIII. Sagoma limite con la minima zona libera per i nuovi impianti fissi.
 - » XIV. Sagoma limite con la minima zona libera per gli impianti fissi esistenti.
 - » XV. Tracciamento delle curve.

INDICE DELLE FIGURE

Fi	g. 1.	Calibro normale FSC, 1 per lo scartamento di m. 1,445	Tav.	1
>>	2	. Calibro FSC. 2 per gli scartamenti di m. 1,445 - 1,450 - 1,455		
		- 1,460	>>]
>>	3	. Calibro FSC. 3 per gli scartamenti di m. 1,435 - 1,440 - 1,445		
		- 1,465 , ,	>>	1
»	4	. Raccordo parabolico senza spostamento della curva primitiva	*	13-
>>	5	Idem 1° caso	>>	11
>>	6	. Idem 2° caso	>>	H
þ	7	Raccordo parabolico con spostamento della curva primitiva	>>	111
>>	8	. Idem. 3° caso	>>	IV
>>	9	. Idem. 4° caso	>>	IV
¥	10	. Esempio di raecordo parabolico	>	V
≫	- 11	. Alzatraguardo con livelletta	>>	VI
۵(12	. Idem con archipendolo	>>	V
×	13	. Particolari dell'alzatraguardo per velocità massima di km. 60		
		all'ora	>>	VI
*	- 14	. Idem dell'alzatraguardo per velocità massime di km. di 80		
		e 100 all'ora.	»	VI
>>	15	. Disposizione delle rotaie da m. 12,00; 11,94 ed 11,88 in una		
		curva di m. 160 di raggio	>>	VII
>>	16	. Raccordo di una orizzontale con una ascesa	>>	VII
>>	17	. Idem di due ascese	>>	VII
>>	18	. Idem di una ascesa con una discesa	>>	VII
×	19	. Binario insabbiato per stazioni di testa e per piani caricatori	>>	VIII
>>		. Accatastamento delle traverse)))	VIII
>>		. Calibro FSC. 4 per l'intagliatura delle traverse con piastre		
		piane	>>	IX
39	22	. Idem FSC. 5 per l'intagliatura delle traverse senza piastre.	>>	IX
>>		. Idem FSC. 6 per la spianatura delle traverse	>>	ΙX
30		. Verifica dell'inclinazione dei calibri	>>	IX

Fig.	. 25. Figure schematiche per il rincalzamento delle traverse, 🕠 🗋	lav.	4X
Ю	26. Trochitomografo	>>	70
×	27. Sezione della piattaforma stradale e della massicciata per		
	linee principali a semplice binarlo	>>	XI
>>	28. Idem per linee secondarie a semplice binario	30	XI
>>	29. Massicciata con sottostrato di pietrame	>>	XI
>	30. Sezione della piattaforma stradale e della massicciata per		
	lineo principali a doppio binario	39	XI
>>	31. Idem per linee secondarie a' doppio binario)ù	XI
>	32. Sagoma limite per il servizio cumulativo	>>	XII
>>	33. Idem con la minima zona libera per i nuovi impianti fissi.	>>	XIII
>>	34. Idem con la minima zona libera per gli impianti fissi esistenti	>>	XIV
>>	35. Tracciamento delle curve per ascisse e ordinate	36	XV
>>	36. Idem per ascisse ed ordinate di una curva di 280 m. di raggio	>>	ΧV
>>	37. Tracciamento delle curve per corde e per freccie	30	XV
>>	38. Idem di una curva di m. 250 con rotaie da m. 0	>>	XV
>>	39. idem con rotaie da m. 12	≫	XV
>>	40. Tracciamento delle curve per corde prolungate)0	XV
39	41. Idem per corde prolungate di una curva di m. 100 di raggio		XV
>>	42. Rettificazione delle curve	10	XV

TESTO

PARTE PRIMA

Norme generali

CAPITOLO J.

Disposizioni d'indole generale relative ai binari, alla piattaforma stradale, al materiale ed agli impianti fissi in genere.

1. — Larghezze normali del binario (scartamenti) in rettifilo ed in curva e larghezza delle intervie. — Le larghezze normali fra i lembi interni delle rotaie costituenti il binario in rettifilo ed in curva, con traverse in legno, in cemento armato e con traverse metalliche, esclusi i deviatoi, le intersezioni ecc. sono indicate nella tabella N. 1 a pag. 59.

Per la misura degli scartamenti si fa uso dei calibri, i quali sono di tre tipi. Il primo (marca FSC. 1 - fig. 1 Tav. I) serve per il solo scartamento normale di metri 1.445; il secondo (marca FSC. 2 - fig. 2 Tav. I) serve per i quattro scartamenti più comuni cioè per quelli di metri 1.445; 1.450; 1.455 ed 1.460 ed il terzo (marca FSC. 3 - fig. 3 Tav. I) serve per gli scartamenti di metri 1.435; 1.440; 1.445; 1.465.

Pei binari armati con traverse metalliche possono adoperarsi gli stessi calibri. Si nota però che il calibro per lo scartamento di m. 1.450 forzerà alquanto in corrispondenza allo scartamento di m. 1.449 mentre quello di m. 1.460 dovrà presentare il giuoco di un millimetro in corrispondenza allo scartamento di m. 1.461.

Nella larghezza del binario potrà ammettersi una tolleranza in più di 5 m/m per i rettifili e per le curve fino al raggio di m. 400; per le curve di raggio inferiore, potrà ammettersi una tolleranza di 3 m/m.

Si chiama intervia la zona compresa fra due binari paralleli.

La larghezza normale della intervia in piena linea, misurata fra i lembi interni delle più vicine rotaie di due binari attigui, è di m. 2,12; in casi speciali, e previa autorizzazione da parte degli uffici superiori, essa può essere ridotta entro il limite che sarà di volta in volta determinato, tenuto conto di ogni circostanza.

Nei piazzali delle stazioni la larghezza della intervia non deve essere, di massima, inferiore a m. 2,50. Essa viene poi convenientemente aumentata, in corrispondenza ai marciapiedi, alle piattaforme o ad altri impianti che debbano trovare posto nella intervia medesima, come colonne idrauliche, colonne portafanali, casotti per stadere a ponte, cabine di apparati centrali ecc.

2. — Inclinazione delle rotale. — Le rotale debbono essere inclinate di un ventesimo verso l'interno del binario rispetto al piano delle traverse. (*).

Nei binari armati con piastre piane tale inclinazione si ottiene intaccando le traverse nel modo indicato al N.º 13;

^(*) In taluni armamenti di vecchio tipo a cuscinetti ancora esistenti l'inclinazione è di un sedicesimo.

nei binari armati con piastre inclinate l'inclinazione di un ventesimo viene data dalle piastre stesse.

Le rotaie formanti i cuori di molti tipi di deviatoi sono poste verticalmente. Nella parte delle presenti istruzioni relativa ai deviatoi verrà indicato il modo di raccordare le estremità di tali rotaie con quelle del binario corrente.

3. — Raccordo dello scartamento dei rettifili con quello delle curve. — Il raccordo dello scartamento normale nei rettifili collo scartamento allargato nelle curve si eseguisce gradualmente lasciando fisse le rotaie esterne delle curve e spostando le rotaie interne. Il raccordo deve effettuarsi tutto nelle curve a partire dal punto di tangenza, per modo che l'allargamento abbia luogo in ragione di un millimetro per metro.

La regola sovraindicata non è applicabile alle curve dei deviatoi per le quali dovranno seguirsi le indicazioni speciali per ciascun tipo di deviatoio.

4. — Sopraelevazione della rotaia esterna nelle curve. — Per opporre un contrasto all'azione della forza centrifuga, che si sviluppa nei treni in movimento sulle curve, la fila di rotaie esterne dovrebbe essere rialzata di una quantità inversamente proporzionale al raggio della curva e direttamente proporzionale al quadrato della velocità del treno.

Però essendo ogni linea percorsa da treni aventi velocità diverse e dovendosi proporzionare, per ogni linea, la sopraelevazione delle curve ad una sola velocità, per il calcolo della sopraelevazione delle diverse linee o tronchi di linee si è considerato un valore di tale velocità intermedio fra la massima e la minima dei treni circolanti su di esse.

I limiti massimi di velocità ammessi per i treni variano, nei diversi tronchi di linee, in relazione alle condizioni di tracciato e di stabilità; però fra i limiti più frequentemente prescritti si riscontrano quelli di 55 e 60; 75 ed 80; 90 e 95 chilometri all'ora. Sta poi di fatto che, nei tronchi a lievi pendenze ed a grandi curve delle linee principali, taluni treni raggiungono la velocità di 100 chilometri. In relazione a ciò nel calcolo delle sopraelevazioni si sono considerati tre casi, dei quali il primo contempla i tronchi di linee in cui non viene superata la velocità di 60 chilometri all'ora; il secondo quelli in cui non si supera la velocità di 80 chilometri ed il terzo quelli in cui non si supera la velocità di 80 chilometri ed il terzo quelli in cui non si supera la velocità di 100 chilometri. Nella tabella N. 2 (Pag. 60) sono indicate le sopraelevazioni da assegnarsi alle curve dei diversi raggi in ciascuno dei suddetti tre casi.

La massima sopraelevazione, da non superarsi in alcun caso, è stabilita in centimetri quattordici.

Per ottemperare a tale norma occorre diminuire, nelle curve di piccolo raggio di talune linee o tronchi di linee, il limite massimo di velocità ammesso per la parte rimanente di tali linee o tronchi.

Nella Tabella N. 3 (pag. 61) sono perciò segnate le velocità che i treni non debbono assolutamente superare quando percorrono le curve dei raggi indicati nella tabella stessa. (*)

Nelle stazioni, ove tutti i treni hanno fermata, la soprae-

^(*) Per garantire che le riduzioni di velocità delle quali si tratta vengano rispettate occorrerà in generale estenderle a tutto il tratto che intercede fra le due stazioni tra le quali le curve sono comprese.

Però si potranno limitare tali riduzioni a tratti più brevi ogni qualvolta si verifichino condizioni locali atte a fornire al personale di macchina un mezzo sicuro per riconoscere le località dove le riduzioni debbono aver luogo.

levazione della rotaia esterna nei binari di corsa in curva deve ridursi a metà di quella che si pratica in piena via: nei binari di manovra, sui quali non venga di norma superata la velocità di 10 chilometri all'ora, conviene sopprimere la sopraelevazione.

Di massima alle curve dei deviatoi non si applica la sopraelevazione.

Nei casi speciali nei quali si ritenesse opportuno derogare da tale regola verranno, di volta in volta, stabilite le modalitá da seguirsi.

5. — Raccordo della sopraelevazione. — La sopraelevazione della rotaia esterna, per le curve di raggio superiore ai 1000 metri, deve essere raggiunta gradatamente, quando sia possibile, nel rettifilo che precede il punto di tangenza della curva stessa.

L'alzamento deve essere fatto in ragione di 2 millimetri per ogni metro di lunghezza, cosicchè per raggiungere, ad esempio, un rialzamento di 6 centimetri bisogna incominciare la graduale sopraelevazione della rotaia a 30 metri dal punto di tangenza nel rettifilo.

Qualora il rettifilo interposto fra due curve non consenta l'accompagnamento del livello nella misura sopraindicata, si deve aumentare la pendenza fino a 4 millimetri per metro e quando, malgrado tale aumento, il rettifilo sia ancora insufficiente, è necessario, se le curve sono di senso contrario, impegnare, nel conseguimento dell'intera sopraelevazione, anche un tratto della curva: se invece le curve sono dello stesso senso si manterrà la sopraelevazione per tutto il rettifilo stesso, raccordandola linearmente quando le curve siano di raggio differente.

6. — Raccordi parabolici. — Per le curve di raggio uguale od inferiore ai 1000 metri conviene raccordare planimetricamente i rettifili alle curve circolari mediante una curva parabolica.

Tale provvedimento dovrà adottarsi sempre quando si tratti di linee o tronchi di nuova costruzione: nelle linee esistenti si introdurranno i raccordi parabolici, durante i lavori all'armamento, ogni qualvolta ciò possa farsi con lievi modificazioni agli impianti esistenti. In caso diverso si potranno presentare, di volta in volta, per l'approvazione le proposte che si riterranno necessarie.

I raccordi parabolici dei rettifili colle curve vengono eseguiti mediante una parabola di 3º grado osculatrice ad un arco di cerchio di raggio alquanto inferiore a quello della curva primitiva.

Sia TAQ un allineamento rettilineo ed ABN l'arco di cerchio di raggio R del tracciato primitivo della linea (Tav. II fig. 4). Se per un punto B di questo arco si descrive un altro arco di cerchio EMB di raggio minore R_1 tangente nel detto punto B all'arco ABN è possibile, in generale, raccordare l'arco EMB colla retta TAQ mediante un arco parabolico MO il cui raggio di curvatura, uguale ad R_1 nel punto M, aumenti progressivamente fino al punto di tangenza col rettifilo nel punto O.

Questo sistema di raccordamento è applicabile quando la lunghezza dell'arco primitivo è eguale o superiore ai 160 metri, e tale quindi da permettere un intervallo più o meno lungo od anche nullo, ma non negativo, fra gli archi di raccordo da praticarsi ai due estremi della stessa curva.

Nelle tabelle N. 4 (pag. 62) e N. 5 (pag. 64) sono indicati i valori delle ascisse e delle ordinate corrispondenti ai due seguenti casi:

1° Caso — Curve del tracciato primitivo di sviluppo uguale o superiore ai 200 metri (Tav. II. fig. 5).

2º Caso — Curve del tracciato primitivo di sviluppo inferiore ai m. 200 e fino a m. 160 (Tav. III fig. 6).

Allorquando la lunghezza dell'arco ABN (Tav. III fig. 7) del tracciato primitivo è minore di 160 metri, si ottiene una soluzione conveniente sostituendo all'arco di raggio R un'arco concentrico EM di raggio R_i alquanto inferiore e raccordandolo col rettifilo mediante un arco di parabola OM in modo analogo al precedente.

Le tabelle N. 6 (pag. 66) e N. 7 (pag. 68) sono state calcolate pei seguenti casi:

- 3º Caso Curva del tracciato primitivo di sviluppo inferiore ai 160 metri e fino a metri 100 (Tav. IV fig. 8).
- 4º Caso Curve del tracciato primitivo di sviluppo inferiore ai 100 metri e fino a metri 50 (Tav. IV fig. 9).

Il tracciamento dei raccordi parabolici si effettua per ascisse ed ordinate secondo quanto si è detto precedentemente, facendo uso dei valori riportati nelle tabelle N. 4, 5, 6, 7 (pag. 62, 64, 66 e 68).

La sopraelevazione della rotaia esterna della curva ha luogo con pendenza uniforme a partire dall'origine del raccordo parabolico col rettifilo e raggiunge il massimo che compete in ciascun caso alla curva, alle distanze (ascisse) indicate sulle tabelle N. 8 (pag. 70), N. 9 (pag. 71) e N. 10 (pag. 72).

Sulla fig. 10 della tav. V sono indicate le ascisse e le ordinate per un raccordo parabolico di m. 60 con raggio primitivo di m. 350 (2º Caso) nonchè le ascisse dei punti di sopraelevazione per una linea percorsa con una velocità massima di Km. 60 all'ora (Tabelle 5º e 9º).

7. — Modo di regolare la sopraelevazione della rotaia esterna mediante l'alzatraguardo. — Per regolare e verificare la sopraelevazione della rotaia esterna rispetto a quella interna nelle curve, si fa uso di una tavola di legno intagliata a scaletta ad una delle sue estremità (Tav. VI fig. 11, 12, 13 e 14).

I gradini, alti ciascuno un centimetro, sono quattordici e formano così tutta la scala fino alla massima sopraele-vazione di 14 cm. della rotaia esterna su quella interna. La estremità dell'alzatraguardo porta scritto su di una faccia, in corrispondenza di ogni gradino, per il caso della velocità fino a 60 chilometri all'ora, il raggio della curva a cui ogni sopraelevazione, determinata dal gradino, appartiene, (Tav. VI fig. 13) e sull'altra faccia analoghe indicazioni per le linee con velocità massima fino a 80 chilometri all'ora in cifre nere e per quelle con velocità massima fino a 100 Km. all'ora in cifre rosse (Tav. VI fig. 14).

Sull'alzatraguardo è indicato un solo raggio per ciascuna sopraelevazione. Pei raggi compresi fra due raggi successivi indicati sull'alzatraguardo si adotterà la sopraelevazione corrispondente al maggiore fra i due raggi.

Dovendosi ad esempio sopraelevare la rotaia esterna di 8 cm., come nel caso di una curva di 500 metri in linee percorse con velocità massima di 80 Km. all'ora, si pone l'ottavo gradino sulla rotaia esterna, (Tav. VI fig. 11) appoggiando il lato inferiore della tavola sulla rotaia interna e si regola l'alzamento della rotaia esterna fino al punto in cui il lato superiore della tavola diventa orizzontale, la quale condizione viene verificata mediante la livelletta a bolla d'aria o mediante l'archipendolo, (Tav. VI fig. 12), il filo del quale deve corrispondere collo zero della graduazione.

Le due facce dell'alzatraguardo sono divise, nel senso

longitudinale, in due parti uguali, una dipinta in bianco e l'altra in nero, a fine di far servire la tavola stessa come traguardo, mediante due traguardi semplici o due altre tavole di metà altezza, una delle quali viene posta presso l'occhio di chi traguarda e l'altra nei punti intermedi che si tratta di livellare.

8. — Intervallo o giuoco fra le estremità delle rotaie e modo di regolarlo. — Siccome colle variazioni di temperatura le rotaie si allungano o si accorciano, così è necessario lasciare fra le loro estremità un giuoco, per la libera dilatazione.

Il giuoco normale è quello che risulta quando gli assi dei fori delle rotaie e delle ganasce corrispondono coll'asse delle chiavarde di collegamento.

Il giuoco da lasciarsi fra le estremità di due rotaie all'atto della loro posa in opera, viene regolato mediante la tabella N. 11 (pag. 73) che indica, per le rotaie da m. 6 (*) da m. 9 e da m. 12, i giuochi relativi ai vari limiti di temperatura segnati dal termometro tenuto all'ombra nel cantiere di posa.

I giuochi di cui trattasi vengono in pratica ottenuti mediante apposite piastrine di acciaio (fornite in numero di 10 per ogni grossezza) e varianti di millimetro in millimetro a partire dalla grossezza di $^{m}/_{m}$ 2 fino a quella di $^{m}/_{m}$ 12.

Ogni cantiere di rifacimento, di rinnovamento o di costruzione, deve essere provvisto della cassetta utensili contenente, oltre agli altri attrezzi (catene per la distribuzione delle traverse, calibri e piastrine per gli intervalli

^(*) I giuochi corrispondenti alle rotaie da m. 6 verranno applicati anche alle rotaie da m. 6.30.

dei cuori e delle controrotaie), anche il termometro centigrado e le piastrine pei giuochi.

Le piastrine vengono applicate in cinque giunzioni e cioè: quattro coppie nelle quattro giunzioni che precedono l'ultimo giunto che si mette in opera e la quinta coppia nel giunto medesimo.

9. — Impiego delle rotaie corte nelle curve. — Nelle curve lo sviluppo della fila interna delle rotaie essendo minore dello sviluppo della fila esterna, ne deriva che, mentre al principio della curva le due giunzioni si trovano sulla stessa normale all'asse del binario, procedendo sulla curva stessa le giunzioni della fila interna avanzerebbero sopra quelle della fila esterna, se non si intercalassero delle rotaie di lunghezza minore di quella normale nella fila interna delle rotaie.

Qui appresso sono indicate le lunghezze delle rotaie corte da porsi in corrispondenza a quelle normali. Rotaie normali . . . da m 12,00; 9,00; 6,30; 6,00.

Date tali lunghezze, si deve di regola impiegare una rotaia corta ogni qual volta la squadra, applicata alla estremità della rotaia esterna, segni sulla rotaia interna una differenza uguale o maggiore della metà della differenza di lunghezza fra la rotaia normale e quella corta e cioè:

Per rotaie corte da m. 11,94; 11,88; 8,94; 6,26; 5,96. Semidifferenza. » » 0,03; 0,06; 0,03; 0,02; 0,02.

Nelle tabelle N. 12 (pag. 74), N. 13 (pag. 75), N. 14 (pag. 76), N. 15 (pag. 77) e N. 16 (pag. 78) è indicato il

^(*) Per il passato si impiegavano anche rotale corte da m. 11,93, 8,945, 8,91, ma d'ora innanzi tali rotale corte si intendono abolite.

numero ed il posto delle rotaie corte da collocarsi nella fila interna per un certo numero di rotaie normali situate sulla corrispondente fila esterna e la posizione che ciascuna delle rotaie corte deve occupare.

Un esempio spiegherà l'uso della tabella. Dovendosi armare con rotaie da m. 12 una curva di raggio = m. 160 (Tav. VII fig. 15) desumesi dalla tabella N. 12 (pag. 74) che il periodo di intercalazione è di 8 rotaie, e che a queste 8 rotaie normali della fila esterna corrispondono, nella fila interna, 7 rotaie da m. 11,88 ed una rotaia da m. 11,94. Se numeriamo progressivamente le rotaie, a partire dalla 1º rotaia della curva alla 8º, vediamo che le rotaie corte da m. 11,88 da intercalarsi sono quelle corrispondenti ai numeri 1, 2, 3, 5, 6, 7, 8 e la rotaia da m. 11,94 occuperà il posto N. 4. Se la curva avesse uno sviluppo maggiore di 8 lunghezze da m. 12, al primo periodo ne seguirebbe un secondo e così via.

- 10. Raccordo dei cambiamenti di livelletta. Quando il profilo della linea è molto accidentato e le differenze di pendenza sono assai sentite, è necessario raccordare le due livellette successive, mediante una superficie cilindrica o conica (secondochè si tratti di rettifilo o di curva) avente una direttrice di 3000 metri di raggio in corrispondenza all'asse della piattaforma stradale. Nella pratica possono darsi i seguenti casi:
- 1º Raccordo di una orizzontale con una ascesa oppure con una discesa (Tav. VII fig. 16).
 - 2º Raccordo di due ascese (Tav. VII fig. 17).
- 3º Raccordo di una ascesa con una discesa (Tav. VII fig. 18).

I dati occorrenti per eseguire il raccordo nei detti tre casi sono indicati nella tabella N. 17 (pag. 79).

Fra i numeri scritti nella colonna a si cerca quello che corrisponde alla pendenza pel 1º caso; quello che corrisponde alla differenza delle pendenze pel 2º caso; quello che corrisponde alla somma delle pendenze pel 3º caso.

Trovato questo numero, il corrispondente numero della colonna b rappresenta la distanza che deve misurarsi dal punto di incontro delle due livellette verso una parte e verso l'altra, per determinare, su ciascuna livelletta, il punto dal quale deve cominciare la superficie di raccordo.

I numeri che corrispondono, nelle colonne c e d, sulla stessa linea dei primi due trovati, rappresentano rispettivamente la quota a cui deve portarsi il livello dei binario in corrispondenza della intersezione delle due livellette ed a metà lunghezza delle tangenti.

Nel caso di una orizzontale seguita da una ascesa e di due ascese succedentisi le dette due quote rappresentano un alzamento del binario; nel caso di una orizzontale seguita da una discesa o di due discese succedentisi rappresentano invece un abbassamento del livello del binario medesimo, sempre in corrispondenza del punto di intersezione e della metà lunghezza delle tangenti.

Esempi:

1° Caso di una orizzontale seguita da una ascesa del. 15 per mille a=p (Tav. VII fig. 16).

Si cerca il numero 15 nella colonna a e visto che nella colonna b gli corrisponde la lunghezza b=22,50 si misura tale distanza, dal punto di intersezione, sulla orizzontale e sulla ascesa del 15 per mille, determinando così i due punti dai quali deve incominciare il raccordo.

Al punto di intersezione ed alla metà delle tangenti si piantano dei picchetti sopraelevati alla livelletta di progetto rispettivamente delle quantità c = 0.081 e d = 0.021 indi-

cate nelle colonne c e d della tabella N. 17 ed in relazione si modifica il livello del binario.

 2° Caso di una ascesa del 9 per mille seguita da una ascesa del 25 per mille a=p-p (Tav. VII fig. 17).

Si fa la differenza fra le dette due ascese che è del 16 per mille; si cerca il numero 16 nella colonna a e poi si ricavano dalla tabella e si applicano nel solito modo le lunghezze delle tangenti e le quote corrispondenti delle colonne b, c e d e cioè b=24,000; c=0,096; d=0,024.

3° Caso di una ascesa del 12 per mille seguita da una discesa del 20 per mille $a=p+p_t$ (Tav. VII fig. 18).

Si sommano le due pendenze; si cerca il numero 32 nella colonna a, si misurano le tangenti indicate nella colonna b in b=48 e quindi si piantano dei picchetti di riferimento al punto di intersezione delle due livellette ed alla metà delle tangenti, per abbassarvi il livello del binario rispettivamente di c=0.384. e d=0.096 come risulta dalle colonne c=d.

11. — Passaggi a livello. — Quando i passaggi a livello sono armati con controrotaie all'interno del binario, gli intervalli fra rotaia e controrotaia sono regolati dalla tabella N. 18 (pag. 80).

Le controrotaie vengono curvate ad ambedue le estremità in modo da lasciare gli intervalli indicati nella suddetta tabella.

La lunghezza totale delle controrotaie deve essere tale che le loro estremità oltrepassino di un metro almeno i cigli della strada ordinaria.

I blocchi fra rotaia e controrotaia sono aboliti.

Per i nuovi armamenti FS 46 ed FS 50 non si fa uso di controrotaie ordinarie nei passaggi a livello. Nelle istruzioni già pubblicate (Bologna Aprile 1908) sono indicati i provvedimenti e le norme da adottarsi al riguardo.

Per rendere più stabile il binario in corrispondenza dei passaggi a livello, mentre deve mantenersi invariata la distanza delle traverse di giunzione, quella delle traverse intermedie deve essere ridotta a 60 cm., aumentando così il numero delle traverse stabilito per la posa del binario corrente.

La massicciata deve essere hattuta colla mazzeranga per evitare l'affondamento delle ruote dei veicoli.

In corrispondenza ai passaggi a livello il binario verrà sempre armato con traverse di legno.

12. — Binari insabbiati. — Per meglio garantire la fermata delle locomotive o dei veicoli alle estremità dei binari di arrivo dei treni nelle stazioni di testa ed alle estremità dei binari merci che terminano a piani caricatori di testa si può praticare l'insabbiatura di tali binari, nella loro parte estrema (Tav. VIII fig. 19).

La lunghezza dei tratti insabbiati varia secondo i casi in relazione della quantità di forza viva dalla quale può essere animato il treno od il veicolo che si tratta di arrestare. Tale lunghezza deve quindi essere opportunamente stabilita per ogni caso.

13. — Traverse e legnami speciali, loro preparazione e conservazione. — Le traverse possono essere di quercia rovere naturale od iniettata (se con alburno) oppure di legno di altre essenze (cerro, faggio, olmo, pino) iniettate, oppure in ferro od in cemento armato. Quelle di legno hanno usualmente le dimensioni di m. 2,60 × 0,24 × 0,14.

l sorveglianti, quando ricevono le traverse in legno, debbono esaminare i bolli di collaudo impressi sulle medesime per riconoscere se tutte quelle giunte a destinazione sieno state regolarmente collaudate e sieno della categoria richiesta.

L'accatastamento delle traverse deve farsi con ogni cura, scegliendo per le cataste le località più adatte e meno esposte al sole ed alle intemperie.

Le cataste che dovessero rimanere a lungo senza essere rimosse, debbono essere ricoperte con terra, fascine o meglio con vecchi copertoni.

L'accatastamento viene fatto in conformità della fig. 20 (Tav. VIII), impiegando, per lo strato a contatto col terreno, legname fuori uso o pietrame.

Anche i legnami speciali e le traverse iniettate debbono essere accatastati nel detto modo. Durante il maneggio dei legnami iniettati occorre usare la precauzione di non toccarsi il viso, e specialmente gli occhi, con le mani imbrattate delle sostanze di cui essi sono impregnati.

Le cataste debbono essere situate alla massima distanza possibile dal binario e dai fabbricati. Qualora in uno stesso luogo si debbano depositare traverse iniettate e non iniettate, è buona regola, nei riguardi di eventualità di incendi, alternare le cataste della prima specie con quelle della seconda.

Le traverse iniettate debbono essere impiegate possibilmente una di seguito all'altra. In caso diverso si deve evitare che su di uno stesso tratto di linea vengano impiegate traverse iniettate di essenze differenti.

Qualora si presenti come inevitabile questo caso, bisogna stabilire dei contrassegni per poter distinguere, in modo ben chiaro, ciascuna essenza.

Nelle traverse iniettate deve essere limitata al minimo possibile la profondità e l'estensione delle intaccature. Queste poi debbono essere eseguite coll'ascia escludendo assolutamente l'uso della sega, e le parti lavorate debbono essere abbondantemente spalmate con olio di catrame o carbolineum.

Le pareti dei fori destinati agli arpioni ed alle caviglie nelle traverse iniettate debbono pure essere abbondantemente imbevute di olio di catrame o carbolineum.

I gambi delle caviglie e degli arpioni devono ugualmente essere immersi nelle suddette sostanze antisettiche prima della loro infissione nelle traverse.

Per tutto quanto riguarda la custodia, l'impiego e le constatazioni da farsi riguardo alle traverse iniettate, si richiamano le istruzioni pubblicate dal Servizio XI in data 1906.

Avendo i nuovi armamenti piastre inclinate di un ventesimo, non occorre, di regola, intagliare le traverse di legno in corrispondenza delle piastre, quando le superficie di appoggio delle piastre stesse sieno hene spianate e si trovino nello stesso piano.

Il calibro marca FSC.6 per la spianatura delle traverse si ottiene modificando un calibro ordinario da piastre in modo da ridurre sovra uno stesso piano le due lamiere inclinate del calibro stesso (Tav. IX fig. 23).

L'intagliatura delle traverse per la posa delle piastre senza inclinazione viene eseguita mediante il calibro marca FSC.4 (Tav. IX fig. 21) e quella delle traverse senza piastre viene eseguita mediante il calibro FSC.5 (Tav. IX fig. 22).

Sono aboliti i controcalibri, potendosi facilmente verificare i calibri inclinati per l'intaglio delle traverse nel modo seguente.

Si appoggi il calibro sopra il fungo di una rotaia (Tav. IX fig. 24) e si misuri la lunghezza a; l'altezza b deve risultare uguale ad un ventesimo di a; cosicchè se $a = 180 \ m/m$; $b = - = 9 \ m/m$.

Come faccia di posa (inferiore) della traversa deve

scegliersi quella più completa, cioè quella in cui gli smussi e l'alburno agli spigoli sieno meno pronunciati.

Gli intagli si eseguiscono sulla faccia opposta; perciò si appoggia su di essa il calibro e si segnano i limiti di detti intagli corrispondenti agli spigoli a, b (Tav. IX fig. 21) del calibro stesso, in modo che risultino approssimativamente equidistanti dalle due estremità delle traverse.

Occorre tener presente che il piano di contatto delle piastre sulla traversa deve essere tale che le piastre appoggino per tutta la loro superficie sopra legno sano.

L'uso della sega per l'intaglio delle traverse iniettate è, come si è detto, assolutamente vietato e, per quanto possibile, conviene estendere tale divieto anche a tutte le altre specie di legnami non iniettati.

I fori destinati a ricevere gli arpioni o le caviglie devono essere eseguiti sul posto all'atto della posa delle rotaie, e ciò per maggiore garanzia della esattezza da ottenersi nella larghezza del binario, sia nei rettifili, sia nelle curve. Per altro, nell'intento di sollecitare il lavoro, potranno praticarsi in cantiere i fori da una sola parte delle traverse e soltanto uno o due giorni prima di collocarle in opera.

La foratura delle traverse deve eseguirsi collocando sopra le medesime le piastre di appoggio od i cuscinetti, allo scopo di individuare con esattezza la posizione dei fori. Per la foratura delle traverse di essenza dolce iniettata si impiegheranno trivelle di diametro minore del normale.

Tutti i calibri ordinari e speciali per la foratura delle traverse sono aboliti.

Quando i fori siano divenuti inadatti a ritenere efficacemente gli arpioni o le caviglie, essi debbono essere ben otturati con appositi tappi di legno battuti a martello e spianati superiormente coll'ascia. È vietato assolutamente di rompere la parte sporgente dei tappi a colpi di mazza. Invece dei tappi o cavicchi ordinari per l'otturamento dei vecchi fori possono essere adoperati i trenails (tappi a vite) per l'uso dei quali verranno diramate, nel caso, apposite istruzioni.

Dopo otturati i fori, le traverse vengono di nuovo intagliate o spianate, secondo che trattisi di binari con piastre piane o con piastre inclinate o con cuscinetti. Lo spostamento degli intagli, nel senso longitudinale delle traverse nel caso dell'otturamento con tappi ordinari deve essere tale da far risultare i nuovi fori a distanza conveniente dai fori otturati.

14. — Trasporto, accatastamento e conservazione dei materiali metallici. — Il carico e lo scarico delle rotaie viene eseguito facendo scorrere ciascuna di esse sopra altre due disposte parallelamente ed appoggiate con una estremità alla sponda del carro e coll'altra al terreno.

Si evitano così gli urti che, anche quando non cagionino la rottura immediata delle rotaie, possono produrre crinature predisponendole a rompersi in opera.

Si deve aver cura di non gettare mai le rotaie da qualsiasi altezza, anche piccola, e di spianare preventivamente il terreno destinato a riceverle.

Anche gli altri materiali debbono essere caricati e scaricati con cura per evitare le ammaccature, dannose specialmente ai filetti delle chiavarde e delle caviglie.

Per evitare, per quanto possibile, l'ossidazione delle rotaie e degli altri materiali metallici che debbono stare in deposito, si deve procurare di accatastarli in modo da limitare al minimo le superficie di contatto, e da lasciare, tra i vari pezzi, un intervallo tale da permettere la libera circolazione dell'aria ed il facile scolo delle acque.

15. — Limiti di logoramento delle rotaie. — I limiti di consumo delle rotaie pei vari tipi di armamento non possono stabilirsi in modo assoluto perchè varie sono le cause, oltre al logoramento del fungo prodotto dal passaggio dei treni, che concorrono a degradare una rotaia al punto da rendere necessario il toglierla d'opera; e d'altronde anche la tolleranza sul logorio del fungo può variare da linea a linea, secondo i pesi d'asse e le velocità ammesse, e, sopra una stessa linea, secondo che si tratti di binario in galleria od allo scoperto.

Pertanto, qualora lo stato generale delle rotaie, in un determinato tronco di linea, sia tale da far dubitare della sufficiente resistenza del binario, in relazione alle condizioni di esercizio della linea, si dovrà procedere ad una verifica del profilo sopra un certo numero di tali rotaie e, determinatene le condizioni di resistenza, decidere se esse possano ancora rimanere in opera o se debbasi procedere alla loro parziale o totale sostituzione. Per facilitare il rilevamento del profilo delle rotaie in opera serve lo strumento appositamente studiato (Trochitomografo) e rappresentato nella Tav. X fig. 26.

Si possono tuttavia ritenere come massimi assoluti, raggiunti i quali le rotaie non dovranno in alcun caso lasciarsi in opera nei binari di corsa, i seguenti logoramenti:

a, Per rotaie da Kg. 36 per m. l. del Mod. Meridionale, RA 36 M, Calabro Siculo, FC. Società Veneta:

b) Per rotaie da Kg. 36 per m. l. dei Mod. N. 2, V 4, 1º Tipo, RA 36 S, C Società Veneta, NP. Novara-Pino, Governativo Siculo: allo scoperto ed in galleria m/m 10 nel fungo e m/m 2 nella suola

allo scoperto $_{\rm m}/^{\rm m}$ 14 nel fungo e $^{\rm m}/_{\rm m}$ 2 nella suola in galleria $^{\rm m}/_{\rm m}$ 10 nel fungo e $^{\rm m}/_{\rm m}$ 2 nella suola

c) Per le rotaie da Kg 276 e da Kg. 30 dei Mod. N. 3 (2° Tipo FF CC) e RM 30, I° e II° Tipo FSO. (Ferrovia Sicula Occidentale):

allo scoperto ed in galleria $^{m}/_{m}$ 9 nel fungo e $^{m}/_{m}$ 2 nella suola

- d) Per l'armam. TS 10 { allo scoperto mi in galleria m'/m 18 nel fungo e m/m 3 nella suola
- e) l'er l'armam. FS 50 | allo scoporto ed in galleria m/m 20 nel fungo e m/m 5 nella suola.

Un segno manifesto che le rotaie debbono senz'altro essere tolte d'opera si ha quando gli orli dei cerchioni vanno ad urtare contro i dadi delle chiavarde che stringono le ganasce e contro i blocchi posti per mantenere gli intervalli nei cuori e nelle controrotaie dei deviatoi.

Nei ricambi saltuari delle rotaie, si devono colla massima cura evitare sensibili differenze di altezza fra i pezzi che si collocano in opera e quelli attigui che rimangono in posto e ciò allo scopo di eliminare bruschi salti, che darebbero luogo ad urti e martellamenti al passaggio di ogni ruota, con danno del materiale, con dissesto delle giunzioni e con disturbo della buona viabilità.

La differenza di altezza fra rotaie contigue non deve essere, in alcun caso, maggiore di m/m 2.

Quando non sia possibile trovare pezzi di ricambio che soddisfino a tale condizione si deve ricorrere all'impiego di ganasce speciali che permettano di portare allo stesso livello le superficie superiori dei funghi.

Si fa presente però che l'impiego di ganasce speciali, le quali sono piane anzichè ad angolo, torna a pregiudizio della robustezza della giunzione; perciò sarà bene evitare, per quanto possibile, l'uso di tali ganasce anche nel caso di sensibili differenze, il che potrà ottenersi ricambiando, in luogo di una sola, più rotaie, in modo da ripartire la differenza totale fra giunzioni successive, per ciascuna delle quali non venga superato il suddetto limite di ^m/_m 2. È parimenti necessario evitare differenze di altezze, in casi di ricambi, fra aghi e contraghi degli scambi, perchè altrimenti verrebbe a mancare la correlazione necessaria fra le parti di detti nieccanismi con pericolo di sviamenti.

16. — Piattaforma stradale. — La piattaforma stradale per linee a semplice ed a doppio binario, in rettilineo, ha la forma e le dimensioni indicate nelle figure della Tav. XI e cioè:

Fig. 27 semplice binario

** 30 doppio

** 28 semplice

** 31 doppio

** per linee principali

per linee secondarie

Come rilevasi dalle figure stesse, la piattaforma viene costruita a schiena, mediante due piani aventi la pendenza di millimetri 20 per metro. Tale forma viene mantenuta invariata anche nelle curve di grande raggio e precisamente:

per linee o tronchi sui quali è ammessa la velocità massima:

di Km. 60 all'ora fino al raggio di m. 1019;

» 80 » » » 1695;

» 100 » » » 2564.

Per raggi minori la piattaforma, in corrispondenza alle curve, viene disposta, secondo un piano inclinato, in relazione alla sopraelevazione da assegnarsi alla rotaia esterna, giusta quanto è indicato con linee tratteggiate nelle figure.

Nelle linee a doppio binario, la maggiore inclinazione viene praticata soltanto sopra una metà della piattaforma, mentre la sopraelevazione del binario nell'altra metà, è ottenuta mediante un aumento nel sottostrato di massicciata. Nella tabella N. 19 (pag. 81) sono riportati gli elementi relativi alle inclinazioni da assegnarsi alla piattaforma stradale.

17. — Profili normali della massicciata. — I profili della massicciata per linee principali e linee secondarie a semplice ed a doppio binario, si rilevano dalle figure 27, 28, 30 e 31 (Tav. XI).

È da notarsi che, in tutti i casi, la massicciata deve raggiungere, senza oltrepassarlo, il piano superiore delle traverse nell'interno del binario; mentre all'esterno del binario le traverse vengono, di regola, ricoperte alle teste per una altezza tale da raggiungere il piano del ferro, in modo però che le rotaie e le altre parti metalliche dell'armamento restino del tutto scoperte.

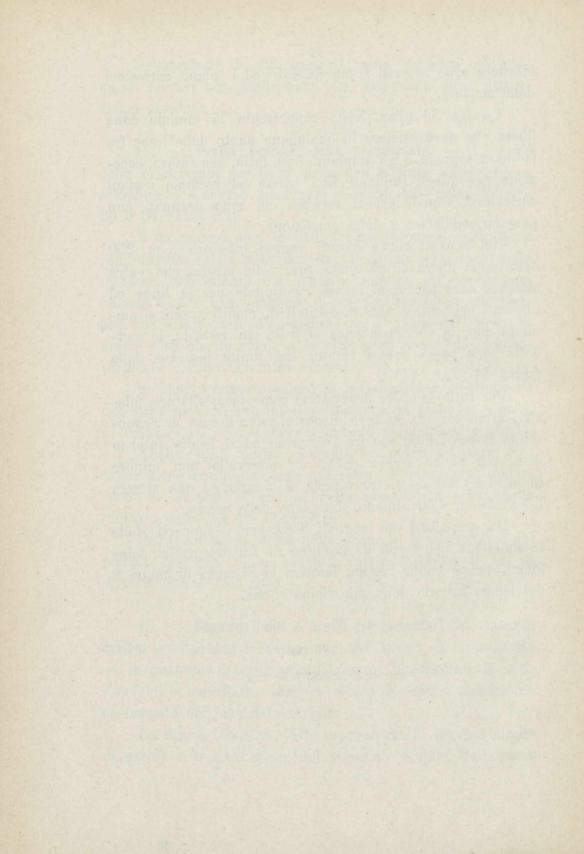
In alcune ferrovie estere la massicciata è costituita da due strati distinti, uno inferiore formato da pietrame a guisa di ossatura, ed uno superiore formato di pietrisco o ghiaia.

Anche sulle nostre ferrovie si potrà adottare una disposizione consimile, ogni qualvolta si riconosca opportuno; in tal caso la sezione della massicciata sarà quella indicata dalla fig. 29 (Tav. XI).

Per facilitare lo scolo delle acque si praticheranno dei piccoli drenaggi nelle banchine alternandoli a 6 m. di distanza l'uno dall'altro.

18. — Sagome limiti e profili regolamentari del massimo carico. — Durante la esecuzione dei lavori di armamento ed in generale di tutti quanti i lavori interessanti la sede stradale, è necessario lasciare libero lo spazio occorrente al transito del materiale mobile.

La figura 32 (Tav. XII) rappresenta la sagoma limite di carico e di costruzione del materiale mobile. Nella parte inferiore sono segnati i marciapiedi ed i piani caricatori delle stazioni.


La fig. 33 (Tav. XIII) rappresenta la minima zona libera che deve esistere in qualunque punto delle linee fra la detta sagoma e gli impianti fissi, fatta, ben inteso, eccezione per quegli impianti fissi (come ad esempio i piani caricatori), i quali per il servizio cui sono destinati non possano soddisfare a detta condizione.

Nel caso di curve aventi raggio inferiore a m. 250 detta zona libera dovrà aumentarsi nella misura che verrà stabilita caso per caso. In via eccezionale, per le linee ed impianti esistenti e non suscettibili di modificazioni, si ammette che, in corrispondenza ai tratti in rettifilo, la suddetta zona possa essere ridotta nel limite indicato dalla figura 34 (Tav. XIV).

Per tutte le opere provvisorie come incastellature, pilastri, armature etc., si deve disporre, salvo il caso di riconosciuta impossibilità, che fra l'ostacolo ed il lembo interno della più vicina rotaia esista un intervallo non minore di m. 4.50 nel senso trasversale al binario, ed una altezza libera di m. 4.50 almeno, dal piano delle rotaie.

Per gli alberi dei segnali fissi, per i supporti delle trasmissioni, per i pali di sostegno di fili telegrafici, telefonici, ecc. è buona regola, lasciare la distanza di metri 2 dal lembo interno della più vicina rotaia.

CAPITOLO II.

Lavori relativi all'armamento.

1. — Posa del binario. — Nella posa del binario si distingue la posa a nuovo dalla posa per rifacimento o per rinnovamento.

La posa a nuovo ha luogo quando si tratta di armare il binario sul corpo stradale ultimato di una nuova linea o sulla sede contigua al binario esistente di una via per doppio binario, oppure quando trattasi di impiantare nuovi binari nelle stazioni.

La posa per rifacimento o per rinnovamento ha luogo quando il nuovo binario viene eseguito in sostituzione di altro binario esistente nella stessa sede.

2. — Lavori speciali relativi alla posa a nuovo. — I lavori speciali per la posa a nuovo sono i seguenti:

1º La picchettazione, che consiste nell'infiggere, nel piano stradale completamente ultimato, dei picchetti alla distanza di 100 m. nei rettifili e di 50 o di 25 m. nelle curve per fissare l'asse del binario ed in pari tempo il livello delle rotaie, il quale viene stabilito mediante una intacca sul fianco di ogni picchetto, oppure mediante la infissione di questo fino al punto in cui la sua testa rimanga al piano prestabilito dell'armamento.

2º Lo spandimento del primo strato di massicciata, che viene effettuato con carriole, barocci ecc. oppure mediante convogli tirati da locomotive o da cavalli su apposito binario.

Nel caso di raddoppio di binari si effettuerà generalmente il trasporto della massicciata servendosi del binario esistente. Quando però, per ragioni di esercizio, convenga non impegnare, coi treni materiali, tale binario, si potrà armare prima il nuovo binario sul piano di piattaforma e portare direttamente su di esso la massicciata mediante treni materiali a piccolissima velocità, spinti dalla locomotiva in coda.

In questo caso la formazione del primo strato di massicciata, mediante il graduale rialzamento del binario, si eseguirà colle norme relative al risanamento della massicciata (pag. 52). Analogo procedimento potrà seguirsi, quando lo si giudichi opportuno, in qualunque altro caso di posa a nuovo.

La picchettazione sovra accennata potrà eseguirsi dopo aver disteso il primo strato di massicciata, quando lo spandimento venga fatto coi mezzi ordinari, bastando in tal caso aver messo prima qualche picchetto per determinare approssimativamente la direzione ed il livello.

Quando invece il trasporto e lo spandimento del primo strato di massicciata viene effettuato mediante treni, occorre anzitutto procedere alla regolare picchettazione, nell'intento di determinare l'andamento del binario da armarsi per tale trasporto.

Disteso il primo strato di massicciata, quando lo span-

dimento venga fatto coi mezzi ordinari, si posa su di esso il nuovo binario colle stesse norme che verranno indicate pel caso di rifacimenti e rinnovamenti (Capoverso 4º montatura del nuovo binario), demolendo quello provvisorio.

Nel caso di spandimento fatto mediante binario provvisorio, è ben inteso che prima di demolire tale binario conviene valersene per trasportare e distribuire sul luogo di impiego tutti i materiali destinati alla posa definitiva.

3" Lo spandimento del secondo strato di massicciata, che viene effettuato dopo allineato e livellato il binario definitivo, avendo cura da principio di rinfiancare le teste delle traverse e più specialmente dalla parte esterna delle curve, per completare poi la massicciata secondo il profilo normale dopo che, trascorso qualche tempo, sia stato regolarizzato il binario togliendo gli avvallamenti e correggendo l'andamento della linea.

3. — Lavori relativi al rifacimento o rinnovamento sulla stessa sede del binario esistente. — Allorquando il deterioramento di un binario in esercizio è pervenuto a tal punto che la circolazione dei treni non possa aver più luogo con la necessaria sicurezza, si deve procedere al ricambio di tutti i materiali di armamento.

Tale operazione è chiamata rifacimento se il vecchio binario è in ferro, e rinnovamento se in acciaio.

I rifacimenti ed i rinnovamenti vengono talvolta eseguiti anche in anticipazione allo scopo di ricavare dei materiali usati servibili per provvedere ai saltuari ricambi nei binari armati collo stesso tipo o ad altre esigenze.

Le operazioni da eseguirsi per il rifacimento o rinnovamento sulla stessa sede del binario esistente sono le seguenti:

1º Trasporto dei materiali. — Quando sia possibile si trasportano direttamente, a mezzo di treni speciali, dal

magazzino o dal deposito, lungo il tronco da rifarsi o da rinnovarsi, le rotaie, le ferramenta accessorie e le traverse occorrenti. In caso diverso si comincia col trasportare detti materiali alla Stazione prossima al luogo di impiego e da questa per mezzo di carrelli si distribuiscono regolarmente ai fianchi del binario da rifare o da rinnovare, in modo che rimanga completamente libero il passaggio dei treni, procurando che non resti impedita la scopertura del binario, e rimanga posto per depositare il materiale tolto d'opera.

Per ogni lunghezza di campata, e, prima che sieno distribuiti i nuovi materiali metallici, debbono essere pronte e distribuite le traverse nuove da mettersi in opera, nel numero che sarà ritenuto strettamente necessario.

2º Scopertura del binario. — Eseguito il trasporto dei materiali, viene tolta la massicciata fino al piano inferiore delle traverse. La massicciata rimossa viene deposta lateralmente al binario, curando sempre di lasciare libero il passaggio dei treni e di non coprire i nuovi materiali distribuiti.

La scopertura deve essere fatta sopra una lunghezza di binario non maggiore di quella che potrà essere rifatta o rinnovata nel tempo disponibile fra due successivi passaggi di treni. Per facilitare la scopertura si può dissodare semplicemente la massicciata, per un tratto non superiore a quello che è possibile di rifare o rinnovare completamente in tutta la giornata.

Tale dissodamento deve peraltro limitarsi alla parte centrale del binario.

3º SMONTATURA DEL BINARIO. — Si fanno svitare da alcuni operai le chiavarde delle giunzioni, mentre da altri si fanno togliere i cunei, se l'armamento è a cuscinetti, oppure le caviglie o gli arpioni interni al binario, se si tratta di rotaie a suola. Per facilitare lo svitamento delle

chiavarde conviene ungerle, qualche giorno prima del rifacimento o rinnovamento, facendo colare qualche goccia di olio fra il dado e la ganascia e sulla parte filettata esterna del gambo. Previa tale precauzione, lo svitamento può aver luogo rapidamente senza guastare il materiale. Lo spezzare le chiavarde a colpi di mazza è, di massima, proibito e si potrà praticare soltanto quando non sia possibile di toglierle altrimenti.

Tutte le ferramenta accessorie tolte d'opera, ganasce, chiavarde, caviglie, arpioni, piastre ecc., debbono essere raccolte ed accumulate per essere poi, a fine di giornata, trasportate al prossimo luogo di deposito.

Le vecchie rotaie e le traverse tolte d'opera debbono provvisoriamente depositarsi lungo il lato della linea non occupato dai materiali nuovi.

4º Montatura del nuovo binario. — Demolito il vecchio binario e messo da parte tutto il materiale tolto d'opera, si procede allo spianamento dello strato inferiore della massicciata, e su questo vengono distribuite le traverse, presso a poco alle distanze prescritte per ogni campata.

Sopra le traverse vengono collocate le piastre di appoggio od i cuscinetti; ciò fatto si mettono a posto le nuove rotaie: si tende lungo le medesime apposita catena munita di maglie speciali alle distanze stabilite per gli appoggi, e si segna col gesso sulle rotaie la posizione esatta che ciascuna traversa della campata deve occupare nella posa. Disposte in tal modo le rotaie, si applicano le ganasce di giunzione, ponendo in opera solo le chiavarde estreme, avvitando il dado senza stringere le ganasce. Le rotaie possono così farsi scorrere per avvicinarle colle loro estremità alla posizione che dovranno assumere, a seconda della temperatura segnata dal termometro durante la posa. Per mantenere poi il giuoco voluto fra le estremità, vengono

poste fra le teste delle rotaie le piastrine indicate nel numero 8 del capitolo I.

Dopo ciò vengono messi i calibri di larghezza del binario in corrispondenza delle giunzioni; si eseguisce, mediante
verrine ad elica, la foratura delle traverse, la quale
deve passare da parte a parte, e si procede all'infissione
degli arpioni od all'avvitamento delle caviglie nelle traverse
di controgiunto; quindi si porta il calibro nel mezzo della
campata e fatti i fori si eseguisce l'attacco alle traverse
centrali procedendo poi fino a quelle attigue alle traverse
di controgiunto.

All'atto dell'inchiodamento, se si tratta di arpioni, si deve procurare che i medesimi penetrino secondo la direzione del foro e per modo che la parte sporgente della testa si disponga bene a contatto colla suola della rotaia, senza però esservi forzata a colpi di mazza dati di fianco. Qualora nella infissione qualche arpione si rompa, bisogna farlo passare al disotto della traversa, infiggendo nel foro medesimo un altro arpione.

Le caviglie a vite mordente debbono essere avvitate mediante le ordinarie chiavi a T senza aggiungere alcun allungamento al braccio di leva.

Eseguiti gli attacchi si procede all'allineamento del binario e quindi al rincalzamento delle traverse, avendo cura di condurle a colpi di mazza, alla posizione segnata sulla rotaia, qualora già non vi si trovassero. La rincalzatura deve essere molto accurata ed energica in tutte le traverse in corrispondenza alle rotaie. È poi necessaria una cura speciale per la rincalzatura di quelle di giunzione nell'armamento Mod. RA 36S e negli armamenti rafforzati con traverse di giunzione a contatto.

Durante l'operazione della rincalzatura viene livellato il binario, rialzando col mezzo della leva le traverse basse e rincalzandole di nuovo colla ghiaia, o togliendo la ghiaia eccedente in corrispondenza ai punti alti, salvo il caso di piccole differenze, le quali possono essere eliminate mediante compressione della massicciata a colpi di mazza di legno sulle traverse.

A questo punto, verificato l'allineamento ed il livello, si tolgono d'opera le piastrine di dilatazione, si stringono fortemente i dadi delle chiavarde estreme e si avvitano quelle centrali.

Nel serrare i dadi si deve far uso della chiave normale, senza aumentarne il braccio di leva, il quale è stabilito in modo che lo sforzo di un operaio non possa guastare il filetto delle chiavarde, ciò che si verificherebbe se il braccio di leva venisse allungato.

Posto così in opera il nuovo armamento, si procede al completamento della massicciata, la quale operazione deve, da principio, limitarsi a mettere fra le traverse la sola quantità di massicciata necessaria per il rincalzo, rimandando la sistemazione definitiva a quando, passati vari treni sul nuovo armamento, si sia avuto campo di regolarizzare definitivamente il binario con successive rincalzature e rettifiche di allineamento e di livello.

Dopo ultimata la posa si debbono rivedere di sovente i dadi delle chiavarde, le caviglie, i cunei e gli arpioni per stringere o battere, secondo il caso, quelli che si fossero allentati.

4. — Serraglie o pezzi di chiusura per congiungere gli armamenti. — Essendo raro il caso che la lunghezza del tratto di binario, da rinnovarsi durante l'intervallo di due treni, corrisponda esattamente al numero delle rotaie da porsi in opera, e dovendosi inoltre provvedere all'unione del binario di linea con quello delle stazioni, è spesso necessario impiegare pezzi di rotaie di lunghezza differente da quella normale.

Per evitare di tagliare, al momento del bisogno, le vecchie rotaie per costituire i pezzi di chiusura, o serraglie, della lunghezza occorrente, è necessario che, prima di smontare il tratto di vecchio binario che si presume di rinnovare nell'intervallo di due treni consecutivi, vengano preparati i detti pezzi, calcolandone la lunghezza in base al numero di campate vecchie da togliere ed a quello di campate nuove da sostituire.

E siccome il numero di campate da togliere può ritenersi sempre uguale per lo stesso intervallo di tempo disponibile per il lavoro, così generalmente saranno sempre gli stessi pezzi di serraglie che verranno messi in opera.

Le serraglie definitive non debbono avere una lunghezza inferiore a tre metri.

Il giuoco fra le estremità delle rotaie vecchie e quelle delle nuove non deve mai eccedere i 2 cm., e, qualora risulti maggiore, bisogna far scorrere le rotaie contigue del vecchio armamento in modo da ridurre detto giuoco al limite voluto.

- 5. Congiunzione del nuovo col vecchio armamento. La congiunzione del nuovo col vecchio armamento si eseguisce mediante ganasce speciali o cuscinetti.
- 6. Precauzioni da prendersi e segnalazioni per la sicurezza del passaggio dei treni. Appena sia stato stabilito di eseguire il rifacimento od il rinnovamento di un tratto di binario, deve darsene avviso al Servizio del Movimento per le opportune disposizioni alle stazioni fra le quali il tratto è compreso, indicando anche il giorno nel quale il lavoro verrà iniziato e la sua probabile durata.

Coloro che dirigono i lavori debbono essere esattamente informati, mediante gli orari di servizio, delle ore di pas-

saggio dei treni sui tratti ove essi lavori si eseguiscono, e debbono fare accurata attenzione se qualche treno ordinario indichi, per mezzo dei segnali prescritti dal regolamento, il successivo passaggio di altro treno facoltativo, nel qual caso si sospenderanno i lavori stessi, occupando altrove il personale.

Allorchè, per l'assenza di segnali speciali sui treni transitanti si possa ritenere libero l'intervallo di tempo fra due passaggi consecutivi di convogli, chi dirige il lavoro; prima di interrompere il binario, deve far proteggere la via nel modo seguente:

Egli porrà sul punto ove deve principiare il disfacimento del binario una bandiera rossa spiegata od una lanterna a luce rossa e manderà, due uomini, muniti di bandiera rossa sempre spiegata o di lume rosso, a collocarsi in vista della bandiera o del lume situato nel luogo del lavoro, ad 800 m. di distanza, uno da una parte e l'altro dalla parte opposta.

Qualora, alla distanza di 800 m. non fosse visibile il segnale posto nel luogo del lavoro, dovranno collocarsi nell'intervallo uno o più agenti muniti pure di segnali, per stabilire la comunicazione fra i due punti estremi. I segnali dovranno rimanere costantemente esposti per tutto il tempo in cui rimarrà esposto il segnale nel luogo del lavoro.

Il personale non deve mai interrompere la via se non quando abbia avuto la certezza che i segnali sieno stati esposti alle distanze prescritte, e deve sempre ristabilire la via 20 minuti prima del passaggio del primo treno che deve transitare.

Ristabilita la continuità della via in modo da poter dare passaggio al primo treno, il personale toglierà il seguale dal luogo del lavoro e quindi tutti gli altri. Al posto di detti segnali verranno collocati dei segnali fissi di rallentamento, i quali saranno mantenuti in opera fino a che la via non sarà perfettamente sicura.

7. — Manutenzione dell' armamento secondo il metodo della revisione generale. — Nei primi tempi, successivi all'apertura di una nuova linea all'esercizio, l'armamento, costituito da materiale nuovo, richiede dei lavori di manutenzione che, in generale, consistono soltanto in parziali ricarichi di massicciata e nella rettifica degli abbassamenti e slineamenti prodotti nel binario dagli ineguali cedimenti del corpo stradale. Raramente i detti lavori riguardano ricambi di traverse o di materiali metallici. Il personale della manutenzione deve quindi vigilare per riconoscere e riparare i difetti che quà e là si presentano saltuariamente.

Quando poi il corpo stradale si è sufficientemente consolidato, il che può ritenersi avvenga in media dopo 6 anni dall'apertura all'esercizio, cominciano a manifestarsi dei guasti nel binario, non più dovuti all'assestamento del corpo stradale, ma invece al deperimento degli organi del binario stesso.

È allora che il metodo di manutenzione saltuaria riesce poco efficace perchè il personale, riparando i difetti saltuari che appariscono, non è sicuro se le condizioni della voluta stabilità si mantengano anche dove l'armamento si manifesta in apparenza regolare, non potendo avere la cer'tezza che ivi le rotaie, le traverse e le ferramenta accessorie si trovino tuttavia in buono stato, giacchè difficilmente può ricordarsi se vi siano state eseguite riparazioni recenti, ed, in caso affermativo, quale fosse lo stato di conservazione dei materiali del binario.

Da ciò nasce la necessitá di rendersi conto, in modo completo, delle condizioni dell'armamento per avere, in ogni tempo, la certezza che, per un dato tratto, a partire per esempio dall'origine del tronco, la via è in buono stato perchè recentemente riveduta e riparata, mentre sullo sviluppo rimanente, pur presentando la occorrente stabilità, essa dovrá sottoporsi alla revisione, per ricambiarvi i materiali eventualmente deperiti.

Tale certezza, così necessaria, delle condizioni della via si può avere soltanto eseguendo la manutenzione dei binari secondo il metodo della revisione generale, il quale consiste nel rivedere l'armamento in tutte le sue parti, ricambiandone gli organi deperiti e correggendone i difetti di scartamento, di allineamento, di livello ecc. Ciascuna squadra comincia tale lavoro dall'origine del proprio tratto e procede verso la fine per terminarlo interamente in un anno se trattasi di una linea a grande traffico, od in due anni, e cioè metà per anno, se la linea ha una media frequenza di treni, od in tre anni, ossia un terzo per anno se è di secondaria importanza, e ricomincia poscia da capo l'operazione, procedendo ordinatamente colla stessa successione di tempi e di luoghi.

Le linee vengono pertanto divise in tre categorie, comprendendo nella prima quelle a regime di un anno, nella seconda quelle a regime di due anni e nella terza quelle a regime di tre anni.

Le operazioni che costituiscono la revisione generale sono le seguenti:

- 1º SCOPERTURA DEL BINARIO.
- 2º ISPEZIONE, VERIFICA E RICAMBIO DEI MATERIALI D'ARMA-MENTO, CORREZIONE DEI FUORI SQUADRO E DEI GIUOCHI FRA LE ROTAIE.
 - 3º RETTIFICA DEL LIVELLO E RINCALZAMENTO DELLE TRAVERSE.
 - 4º RICOPERTURA DEL BINARIO.
 - 5º REGOLARIZZAZIONE DELL'ALLINEAMENTO.
 - 6º Profilatura della massicciata e delle banchine.

Si descrivono sommariamente qui appresso le dette operazioni, le quali dovranno sempre essere eseguite nell'ordine suaccennato.

Scopertura del binario. — Tale operazione si eseguisce rimuovendo la massicciata dalle estremità delle traverse fin presso l'asse del binario, lasciando nel mezzo del binario stesso un nucleo di massicciata della larghezza di m. 0,50. La rimozione della massicciata deve giungere fino a circa 5 cm. sotto il piano inferiore delle traverse, per poterle rincalzare di nuovo.

La scopertura del binario deve farsi al mattino e per una lunghezza di binario non maggiore di quella che si ritiene di poter rivedere e sistemare in giornata.

Ispezione, verifica e ricambio di materiali d'armamento, correzione dei fuori squadro e dei giuochi fra le rotale. Scoperto l'armamento, si debbono esaminare le traverse per riconoscere se e quali sieno da cambiarsi, quali debbano essere intagliate o spianate di nuovo all'appoggio delle rotaie, e quali possano essere lasciate in opera.

Debbono inoltre esaminarsi le ferramenta accessorie di appoggio o di attacco, provvedendo agli eventuali ricambi. Si verifica poi lo scartamento del binario, in corrispondenza delle giunzioni ed a metà di ciascuna campata, e, qualora le traverse siano spostate e le giunzioni fuori squadro, si riportano nella posizione voluta secondo la distribuzione normale. I fuori squadro non debbono essere maggiori di cm. 3. La relativa correzione verrà fatta ripartendo la differenza fra le giunzioni vicine, in modo che i giuochi fra le estremità delle rotaie risultino regolari. I fuori squadro sono dovuti, come è noto, allo scorrimento ineguale delle due file di rotaie. Qualora tali scorrimenti assumessero, in qualche tronco, carattere di speciale gravità, dovranno essere segnalati agli uffici superiori per lo studio degli opportuni provvedimenti.

Rettifica del livello e rincalzamento delle traverse.— Effettuata la verifica dei singoli materiali d'armamento, ricambiati quelli inservibili e tolti i fuori squadro, si procede alla livellazione del binario, eliminandone gli abbassamenti. A tale oggetto, dopo di avere stabiliti i punti fissi di riferimento, viene regolato il livello di tutte le giunzioni a mezzo dei traguardi. Il livello nel mezzo delle campate viene sistemato ad occhio traguardando le giunzioni già livellate.

La sopraelevazione della rotaia esterna nelle curve deve essere quella normale stabilita pei singoli casi, giusta le norme indicate al numero 4 del Capitolo I, e può ammettersi soltanto una tolleranza di 10 ^m/_m in più od in meno.

Il rincalzamento delle traverse del tratto di via in corso di revisione deve farsi contemporaneamente alla rettificazione del livello.

Per ottenere la necessaria uniformità di compressione della massicciata sotto la traversa per effetto del rincalzamento è indispensabile che tale operazione venga fatta metodicamente e da operai bene esercitati. La compressione regolare della massicciata si ottiene formando dei gruppi di quattro uomini, due da un lato e due dall'altro di una stessa traversa ed abituandoli a dare contemporaneamente i colpi di piccone sotto la traversa.

L'operazione si eseguisce in due periodi.

Nel primo periodo i quattro operai si collocheranno in A B C D (Tav. IX fig. 25 — 1º periodo), stando A e C di fronte rispettivamente a B e D.

Si comincia il rincalzamento in corrispondenza delle rotaie e si continua procedendo per cinquanta centimetri circa verso l'estremità e verso il mezzo della traversa. Ciò fatto ciascun operaio passa nell'altra posizione indicata nello schizzo (2º periodo) ed eseguisce l'analoga operazione lungo

il lato della traversa opposto a quello su cui ha operato nel primo periodo.

Per ogni campata di binario si destina una squadra di quattro rincalzatori, la quale, ultimato il lavoro di una campata, si sposta per andare a rincalzare la campata successiva.

Dopo il rincalzamento riesce vantaggioso appoggiare ai lati delle traverse un po' di massicciata allo scopo di proteggere quella già compressa, affinchè non abbia a smuoversi sotto il passaggio dei treni.

RICOPERTURA DEL BINARIO. — La ricopertura completa del binario non deve farsi se non dopo che le traverse siano completamente rincalzate. Essa può essere cominciata quando siano state rincalzate alcune campate e si effettua riempiendo di massicciata i vuoti d'onde fu tolta, avendo cura di smuovere prima col piccone la massicciata del fondo dei vuoti stessi, allo scopo di facilitare lo scolo delle acque piovane.

REGOLARIZZAZIONE DELL'ALLINEAMENTO. — L'allineamento si regolarizza mediante le leve. Gli angoli più sentiti vengono tolti prima della ricopertura del binario, perchè implicano talvolta anche una correzione del rincalzamento.

I raccordi fra i rettilinei e le curve si regolano, ove sia il caso, nel modo indicato nel numero 6 del Capitolo I.

Profilatura della massicciata consiste nel disporla secondo la sagoma normale di cui al numero 16 del Capitolo I, in modo cioè che gli spigoli si mantengano paralleli ed alla regolare distanza dalle rotaie. Lo stesso dicasi dell'andamento delle unghiature della massicciata sulle banchine della piattaforma e delle banchine stesse le quali dovranno essere completamente spianate, profilate e sgombrate da ogni ostacolo che possa opporsi allo scolo delle acque.

Il metodo della revisione generale deve applicarsi anche per la manutenzione dei binari secondari delle stazioni, pei quali per altro il periodo di compimento sarà naturalmente molto più lungo di quello che si richiede pei binari principali ed in piena via. In generale tale periodo sarà di 6 anni, salvo a diminuire la durata pei binari molto affaticati dalle manovre o dal passaggio delle locomotive in prossimità dei depositi.

I periodi di revisione generale di ciascuna linea verranno stabiliti in relazione alle condizioni speciali di traffico e di clima.

L'inesattezza dello scartamento del binario che è, generalmente, dovuta all'alterazione della inclinazione dei piani di appoggio ed all'allentamento od al logorio del mezzo di attacco (arpioni o caviglie) si corregge, intagliando o spianando di nuovo, secondo che si tratti di armamento con piastre piane o con piastre inclinate, le traverse che possono restare in opera ed anche cambiando di posto gli arpioni o le caviglie in modo che queste vengano a trovare efficace presa nei nuovi fori praticati nelle traverse. I vecchi fori debbono essere chiusi con appositi tappi di quercia, nel modo descritto al numero 13 del Capitolo I.

Nelle giunzioni si deve aver cura: di togliere le sbavature che si fossero formate alle estremità delle rotaie per effetto del passaggio dei treni, le quali sbavature, penetrando nell'intervallo o giuoco, potrebbero impedire la libera dilatazione delle rotaie; di esaminare le ganasce ricambiando quelle crinate o logorate nei piani di appoggio contro le rotaie; di esaminare inoltre le chiavarde e le caviglie per togliere d'opera tutte quelle che non fossero più in grado di stringere efficacemente.

È da notare che la revisione generale in piena via, eseguendosi a piccoli tratti e colle dovute cautele, non

implica in generale la necessità di esporre segnali di rallentamento.

È inteso che, adottando il metodo della revisione generale, non è escluso il caso che si debba talvolta sospendere il lavoro in corso per provvedere a qualche guasto che si manifesti in altro tratto della linea; ma, per esperienza fatta, può affermarsi che i buoni effetti della revisione generale accuratamente eseguita rendono rari i bisogni di saltuarie riparazioni.

Per tener conto del progresso della revisione generale, i Sorveglianti dovranno compilare gli stati di avanzamento secondo le norme stabilite.

S. — Risanamento della massicciata. — Allorchè la massicciata è costituita da ghiaia o pietrisco frammisto a materie terrose, le acque piovane non scolando liberamente, rammoliscono la terra trasformandola in un impasto fangoso che rende instabile l'armamento, perchè permette alle traverse di abbassarsi e di alzarsi, allentando così i mezzi di attacco delle rotaie.

L'instabilità del binario può anche dipendere dalla scarsezza di volume della massicciata stessa, quando cioè le traverse non risultino sufficientemente rinflancate.

A togliere il primo difetto occorre il risanamento, il quale consiste nella vagliatura della massicciata per purgarla dalle materie terrose, e poichè con tale operazione viene sempre a scemare il volume della massicciata, così è necessario rifornirla, per ricostituire la sagoma normale facendovi in tal modo il ricarico occorrente.

Mediante il ricarico si corregge il secondo difetto. È però ben inteso che il ricarico di ghiaia vagliata o pietrisco, in una massicciata esistente, si eseguirà soltanto nel caso in cui detta massicciata sia di buona qualità e frammista ad una limitata quantità di materie terrose.

Il risanamento deve praticarsi su tutta la massicciata fino al piano di formazione.

Le singole operazioni da eseguirsi per conseguire il risanamento della massicciata di un tratto di binario sono le seguenti:

1º Scoprire il binario fino al piano superiore delle traverse per una lunghezza di m. 200 circa.

2º Esporre i segnali per il rallentamento dei treni, sul tratto corrispondente al lavoro.

3º Togliere la massicciata interposta fra le traverse, accumulandola lungo un lato del binario.

4º Togliere il nucleo di massicciata sottostante alle traverse, depositandola insieme alla precedente, ed abbassare gradatamente il livello del binario fino a fare appoggiare sul piano di formazione la faccia inferiore delle traverse. Il raccordo del dislivello fra il piano del binario esistente e quello abbassato verrà fatto mediante due piani inclinati (uno per parte) aventi ciascuno una lunghezza di almeno 20 metri ed una pendenza non maggiore del 20 %.

5º Predisposto così il lavoro, eseguire la vagliatura e ricollocare gradatamente la massicciata risanata a posto riportando il binario al suo primitivo livello con rialzamenti successivi.

Eseguito il rialzamento e rincalzamento completo, si procederà subito al ricarico occorrente per completare la massicciata, disponendola e profilandola secondo il tipo della sagoma normale.

Sui tratti di linee aventi pendenza superiore al 20 % on non potendosi abbassare il livello del binario come è indicato al precedente capoverso 4°, perchè si aumenterebbe di troppo la pendenza in uno dei raccordi, si procede nel seguente modo. Compiute le operazioni di cui ai capiverso 1°, 2° e 3° per un tratto che comprenda quattro campate, si ese-

guisce nel tratto medesimo la vagliatura della vecchia massicciata, indi, in un intervallo fra i treni, si toglie il nucleo di massicciata sottostante alle traverse di una o due campate, secondo la durata dell'intervallo, e si colloca subito in opera la massicciata vagliata, in modo da ricostituire gli appoggi delle traverse senza dover alterare sensibilmente la pendenza del binario.

- 9. Verifica del tracciato delle curve. Per verificare il tracciato delle curve di binari e deviatoi si può seguire uno dei seguenti sistemi.
- 1º Tracciamento per ascisse e ordinate. Questo sistema consiste (Tav. XV fig. 35) nel segnare sul terreno la linea retta fondamentale tangente alla curva nel suo punto di origine, dividerla, a cominciare dal punto di tangenza, in un certo numero di parti uguali (le distanze dei vari punti così segnati a cominciare da quello di tangenza formano le ascisse): condurre dai punti di divisione delle perpendicolari (ordinate) alla retta fondamentale e riportare su queste le lunghezze indicate nella relativa tabella N. 20 pag. 82 che si estende dal raggio di m. 100 a quello di m. 1000.

Dovendo, per esempio, tracciare sul terreno una curva di raggio m. 280, si dividerà la retta fondamentale in parti eguali di m. 5 (fig. 36), e quindi si tracceranno le ordinate assegnando a queste le lunghezze indicate nella Tabella N. 20 pag. 84 pel raggio corrispondente e cioè: m. 0,04 alla prima ordinata a partire dal punto di tangenza; m. 0,18 alla seconda; m. 0,40 alla terza e così di seguito.

Talvolta il metodo sopra indicato è di difficile applicazione, sia per le accidentalità del terreno sia per ostacoli che si incontrano, in ispecial modo nelle stazioni, quando trattisi di correggere il tracciato di binari esistenti. Potrà allora usarsi uno dei metodi seguenti. 2º Tracciamento per corde e per freccie. — Il sistema più facile in pratica per la verifica delle curvo esistenti è quello di riferirsi alla lunghezza delle rotaie. Perciò nella tabella N. 21 pag. 92 sono state calcolate le corde e le freccie per un certo numero di rotaie da m. 6, 9 e 12.

Le fig. 37, 38 e 39 (Tav. XV) dimostrano chiaramente l'uso della tabella per una curva di raggio m. 250 con rotaie da m. 9 e con rotaie da m. 12. Si intende che, per un binario armato con rotaie da m. 6, si considereranno tre rotaie da sei in luogo di due da nove, oppure due o quattro rotaie da sei in luogo di una o due rotaie da dodici.

Una regola pratica, pure assai utile per la verifica e la correzione del tracciato delle curve, è la seguente: si misurano esattamente parecchie freccie della curva da verificarsi sopra una stessa corda (impiegando a tal fine una apposita funicella); si sommano le varie freccie e la somma divisa per il loro numero dà la freccia media, che dovrà servire per regolarizzare la curva.

3º Tracciamento per corde prolungate. — Il tracciamento per corde prolungate si opera nel seguente modo.

A partire dal punto A di tangenza (Tav. XV fig. 40) si porta una ascissa di metri 5 per raggi fino a 200 metri; di m. 10 per raggi da 220 a 750 metri; di metri 20 per raggi da 800 a 1000 metri, secondo quanto è indicato nella tabella N. 22 pag. 94. Si prende quindi la metà (4y) del valore di y corrispondente e si riporta a squadro dal punto c in d. Il punto d appartiene alla curva. Si traccia poscia la corda Ad prolungandola fino in e in modo da avere de = Ac = x e si riporta a squadro l'ordinata y = ef. Anche il punto f apparterrà alla curva; si prolunga df fino in g e si ripete l'operazione precedente e si prosegue così fino al termine della curva.

Per maggior chiarezza nella fig. 41 sono riportate le

misure corrispondenti ad una curva di raggio uguale a m. 100.

Correzioni di tracciamenti delle curve. — I vari metodi per tracciare le curve dovrebbero essere tali da condurre la curva esattamente ai due punti di tangenza stabiliti sugli allineamenti; ma l'imperfezione degli strumenti, le accidentalità del terreno ecc. causano talvolta delle deviazioni più o meno grandi che è d'uopo correggere. Converrà pertanto, quando l'errore commesso sia abbastanza notevole, verificare di nuovo il tracciato per ridurre al minimo possibile l'errore stesso. La correzione dei piccoli errori del tracciato si potrà poi effettuare nel seguente modo (fig. 42).

Sieno 5 i punti tracciati per raccordare colla curva AB due rettifili e sia BC = 0^{m25} la differenza risultante.

Si divida questa differenza in 5 parti ed il quoziente 0,05 si riporti una volta da a ad a_1 , due volte da b a b_1 tre volte da c a c_4 , ecc.

Bologna, Ottobre 1908.

IL CAPO SERVIZIO Ing. R. RINALDI

TABELLE

TABELLA N. 1.

Larghezze del binario (scartamenti) in retta ed in curva.

		Larghezza (scarta Me	mento)	Allarg:	
INDIC	CAZIONI DEL BINARIO	Traverse in legno od in cemento armsto	Traverse me- talliche	Traverse in legno od in comento armato	Traverse me- talliche
Linea retta e o	mrve di raggio superiore a m. 650	F 445	1 445	_	
Curve di raggi	o m. 650 ed inferiori e fino a » 500	1 450	1 449	5	4
»	inferiori m. 500 » » 400	1. 455	1.455	10	10
»	» » 400 » » 120	1.460	1.461	15	16
»	» » 120 . ,	1 465		20	

TABELLA N. 2.

Sopraelevazione della rotaia esterna nelle curve.

Sopraele-		Velo	cità			2º C./ Velo n 8º l	cità			Velo	A.SC cità km, al	
VALIGHE					RAGGI	DEL	LE C	URVE				
zn.												
0. 14	da m.	182	fino	a 189	đa m.	303	fino :	314	da nı,	458	fino	2 475
0 13	sup. n m	. 189	>>	204	sup, an	1.314	>>	339	sup, a m	475	»	513
0, 12	*	204	>>	222	>>	339	»	369	»	513	>>	557
0 11	»	222	»	243	>>	369	>>	404	»	557	»	610
0, 10	*	243	»	268	»	404	*	446	»	610	»	675
0 09	*	268	>>	300	*	446	>>	499	»	675	»	754
o. o8	»	300	>>	340	»	499	*	565	>>	754	*	855
0. 07	»	349	>>	392	>>	565	>>	652	»	855	>>	986
0 06	*	392	>>	463	»	652	>>	771	>	986	>>	1165
0.05	»	463	>>	566	*	771	>>	942	»	2011	Ŋ	1424
0 04	»	566	>>	728	»	942	>>	1211	*	1424	>>	1831
0 03	»	728	>>	1019	»	1111	>>	1695	»	1831	>>	2564
0 02	»	1019	>>	1699	»	1695	*	2825	*	2564	»	4273
10.0	»	1699	>>	5097	*	2825	>>	8476	>>	4273	>>	12819

Limiti di velocità nelle curve sottoindicate aventi la massima sopraelevazione di m. 0.14.

Raccord parabolici

And sse ed or that della curve di raccortto

10 Caso (Tav. II fig. 5)
Raccordi senza spostamento
della curva primitiva.

Curve di tracciato primitivo di lunghezza uguale o superiore ai m. 200. Lunghezza del raccordo parabolico = m. 75. Origine del raccordo parabolico a m. 32,58 dal punto A. $R_1=0,9505~R.$

R	RAGGI		AS	ASCISSE 1	E ORDII	ORDINATE A PARTIRE	PARTI		DALL' ORIGINE DELLA	INE DE		JRVA P.	CURVA PARABOLICA	ICA	
dell	delle curve			ίδ.	sull' arco	arco parabolico	0				sull' ar	arco di ra	di raccordo	11/20	del punto B
					1		B	metri			34				
					1										
C E	ascisse	OI	20	30	40	50	09	70	75	80	06	100	OII	120	125,470
001	ordinate	910,0	0,124	0,420	0,995	1,944	3,359	5,334	6,560	7,962	11,336	15,550	20,697	26,870	32,223
175	(ascisse	OI	20	30	40	50	09	70	75	80	06	100	OII	120	127,249
2	(ordinate	0,013	901'0	0,360	0,853	1,666	2,879	4,572	5,623	6,825	6,717	13,330	17,742	23,034	27,818
000	ascisse	IO	20	30	40	50	09	70	75	80	06	100	011	120	128,463
200	ordinate	0,012	0,093	0,315	0,747	1,460	2,523	4,006	4,927	5,980	8,514	11,680	15,546	20,183	24,483
200	ascisse	OI	20	30	40	50	9	70	75	80	06	100	OII	120	129,320
273	ordinate	60000	1/0,0	0,239	0,568	I,IIO	816,1	3,046	3,746	4,546	6,473	8,880	618,11	15,344	21,859
080	ascisse	10	20	30	40	50	09	70	75	80	06	100	OII	120	129,93
200	ordinate	60000	0,075	0,253	0,599	1,169	2,020	3,208	3,964	4,818	6,858	9,482	12,316	15,777	19,735
975	ascisse	10	20	30	- 40	50	09	70	75	80	06	100	OII	120	130,39
213	ordinate	60000	8900	0,230	0,544	1,106	1,836	2,916	3,593	4,375	6,223	8,479	11,152	14,263	17,983

	The same of the sa			-	-			-	-	-	-	-	-	-	-	-
	4,996	3,834	3,016	2,304	1,698	761,1	986'0	0,802	0,505	0,290	0,150	0,063	0,019	0,002	ordinate	200
	132,41	120	011	100	06	80	. 75	70	09	50	40	30	20	IO	ascisse	1000
	5.550	4,262	3,352	2,558	1,886	1.330	1,096	168,0	0,561	0,325	991,0	0,070	0,021	0,003	ordinate	2000
	132,37	120	011	100	06	80	75	70	9	50	40	30	20.	IO	ascisse	000
	6,242	4,797	3,772	2,881	2,123	1,497	1,233	1,002	0,631	0,365	0,187	6/0,0	0,023	0,003	ordinate	000
	132,32	120	OII	100	06	80	75	70	09	50	40	30	20	OI	ascisse	000
	7,131	5,487	4,314	3,294	2,427	1,711	1,409	1,145	0,721	0,417	0,214	0600	0,027	0,003	ordinate	2007
	132,24	120	011	100	06	80	75	70	9	50	40	30	20	IO	ascisse) 002
	8,314	6,351	5,038	3,846	2,833	1,997	1,644	I,337	0,842	0,487	0.249	0,105	0,031	0,004	ordinate	000
	132,12	120	OII	100	06	80	75	70	09	50	40	30	20	OI	ascisse	000
	1966	7,708	6,056	4,621	3,402	2,397	1,977	1,607	1,012	0,586	0,300	0,127	0,037	0,005	ordinate	000
	131,91	120	011	100	06	80	75	70	99	50	40	30	20	10	ascisse	002
1	10,485	8,120	6,378	4,866	3,582	2,524	2,077	1,688	1,063	0,615	0,315	0,133	0,039	0,005	ordinate	614
	131,84	120	OII	100	06	80	75	70	09	50	40	30	20	OI	ascisse	475
	11,065	8,580	6,737	5,139	3,782	2,655	2,193	1,782	1,122	0,649	0,333	0,140	0,042	0,005	ordinate	450
	131,76	120	OII	100	06	80	75	70	09	50	40	30	20	OI	ascisse	014
	017,11	9,094	7,139	5,444	4,006	2,822	2,322	1,887	1,188	0,688	0,352	0,149	0,044	90000	ordinate	674
	131,66	120	OII	100	90	8,0	75	70	09	50	40	30	20	OI	ascisse	201
	12,435	9,675	7,593	5,789	4.259	2,999	2,468	2,009	1,263	0,731	0,374	0,158	0,047	90000	ordinate	400
1	131,54	120	OII	100	06	80	75	70	09	50	40	30	20	OI	ascisse	400
	13,254	10,337	8,109	6,180	4,545	3,202	2,632	2,138	1,347	644'0	0,399	0,168	0,050	90000	ordinate	3/0
	131,40	120	OII	100	90	80	75	70	09	50	40	30-	20	OI	ascisse	27
	14,189	960'11	8,701	6,628	4,873	3,430	2,822	2,291	1,443	0,835	0,428	0,180	0,053	10000	ordinate	320
	131,23	120	OII	001	06	80	75	70	09	50	40	30	20	OI	ascisse	r c
	15,264	966'11	9,404	7,164	5,269	3,713	3,047	2,467	1,554	668,0	0,460	0,194	0,058	100,0	ordinate	329
	131,01	120	OII	100	06	80	75	70	09	50	40	30	20	IO	ascisse	100
	16,513	13,017	10,193	7,756	5,697	4,007	3,289	2,673	1,683	0,974	0,499	0,210	0,062	800,0	ordinate	300
	130,74	120	OII	001	06	08	12.	04 /	09)	05 /	04)	(30	02)	or)	(ascisse	1

Baccordi parabollel

Ascisse ed ordinate della curva di raconnis

Bernoull seem spotteness 2" Cann (Tax, 11 fng. 6) della mera paluffica

MARKET	TR.		No.	NE E 01	ASCURE E ORDANCE A ESSETIER PART ORIGINE DELLA CURVA PARAROLICA	A mid	AND SHIP	State of	DHT THE	A COR	WA PAR	Vindagos V	
· ·	1			left on patholic	diffello				1	off and it was the	1		STANDER OF STREET
1	1	B.	8	R	4	8	4	R	7	-4	8	38	109/300
1100	dellatte.	0.000	4,110	P.SPT	1,701	1,250	4,057	5777	71047	1,600	12,691	15,790	BWE
3 365	believ.	T.	11	15	4	No	į	E	12.0	ž.	76	00)	(4)%, task
7	Hilliam	0,000	0,113	1000	1,609	2,010	3,197	3+141	6250	1,441	11,777	Three .	17,070
one 1	210300	#	11:	F.	4	4	i.	E	452	2	8.	00	114,000
1 000	and the	1961	SHE	light	O Special	10362	3,046	1,0156	South	3,200	10,433	Section.	(0)(1)
1 200	ordine.	Ē	ı	300	#	35	1	Ř.	Ħ	æ	8	900	- HEATE
	profitore	Hand .	0,100	60117	605.0	7,116=	11700	41787	5	5.7	100	100	1,1007
17 1710	stellar.	-	A	2	100	3.	- No.	E	r.	ĝ	8	906	10000
-	Sellpure	11(0)0	11,0025	64315	0,245	1,412	3,543	1	(ton)	3990	16239	Dette.	147695
1 110	perfee	300	Ri.	1	0.0	6.6	io.	100	10	-	100	8	Page 19
1000	- Carellines	11070	0,685	cally.	ingly in	1,4535	Supply .	3.8 CT	1441	Office .	23.50	16,272	14.05%

ordinate	1) 000	ascisse	OI	20	30	07	20 /	09	1 04	75	08	06	001	105,155
ascisse 10 20 30 ordinate 0,009 0,072 0,243 cordinate 0,008 0,067 0,225 ascisse 10 20 30 ordinate 0,007 0,058 0,197 ascisse 10 20 30 ordinate 0,007 0,055 0,189 ascisse 10 20 30 ordinate 0,006 0,049 0,166 ascisse 10 20 30 ordinate 0,006 0,047 0,158 ascisse 10 20 30 ordinate 0,006 0,047 0,158 ascisse 10 20 30 ordinate 0,006 0,047 0,158 ascisse 10 20 30 ordinate 0,004 0,033 0,113 ascisse 10 20 30		300	ordinate	0,010	870,0	0,263	0,623	1,217	2,105	3,344	4,122	4,942	819'9	8,710	10,593
ordinate 0,009 0,072 0,243 0 ordinate 0,008 0,072 30 30 30 30 30 30 30 3		-	ascisse	10	20	30	40	50	09	70	7.5	80	06	100	105,294
ascisse		325	ordinate	60000	0,072	0,243	0,575	1,123	1,944	3,074	3,768	4,546	6,355	8,506	964.6
cordinate 0,008 0,067 0,225 ascisse 10 20 30 arctinate 0,004 0,039 0,131 ascisse 10 20 30 arctinate 0,004 0,039 0,099 ascisse 10 20 30 arctinate 0,004 0,029 0,099 arctinate 0,004 0,020 0,099 arctinate 0,004 0,020 0,098 arctisse 10 20 30 arctinate 0,003 0,020 0,098 arctinate 0,003 0,020 0,098 arctinate 0,003 0,020 0,088 arctisse 10 20 30 arctinate 0,003 0,020 0,088 arctinate 0,003 0,020 arctinate 0,004 0,020 0,088 arctinate 0,005 0,020 0,088 arctinate 0,005 0,005 arctinate 0,006 0,006 arctinate 0,007 0,007 arctinate 0,007 0,007 arctinate 0,008		-	ascisse	IO	20	30	40	50	09	70	75	80	- 06	100	105,405
ascisse	,	320	ordinate	800,0	1900	0,225	0,334	1,043	1,803	2,863	3,507	4,227	5,903	7,894	9,104
Ordinate		-	ascisse	OI	20	30	40	50	09	70	75	80	06	100	105,495
a secisse 10 20 30 ordinate 0,007 0,058 0,197 a scisse 10 20 30 ordinate 0,006 0,055 0,189 a scisse 10 20 30 ordinate 0,006 0,049 0,166 a scisse 10 20 30 ordinate 0,006 0,047 0,158 a scisse 10 20 30 ordinate 0,004 0,033 0,113 a scisse 10 20 30 ordinate 0,004 0,039 0,099 a scisse 10 20 30 ordinate 0,004 0,029 0,099 ordinate 0,003 0,029 0,099 a scisse 10 20 30 ordinate 0,003 0,026 0,088 ordinate 0,003 0,020 0,088		375	ordinate	800,0	290'0	0,210	0,501	0,974	1,683	2,671	3,279	3,943	5,504	7,501	8,501
actisse 10 20 30 ordinate 0,007 0,058 0,197 0 ascisse 10 20 30 ordinate 0,006 0,052 0,175 ascisse 10 20 30 ordinate 0,006 0,049 0,166 ascisse 10 20 30 ordinate 0,006 0,047 0,158 ascisse 10 20 30 ordinate 0,005 0,039 0,131 ascisse 10 20 30 ordinate 0,004 0,033 0,113 ascisse 10 20 30 ordinate 0,004 0,033 0,113 ascisse 10 20 30 ordinate 0,004 0,033 0,113 ascisse 10 20 30 arctinate 0,004 0,033 0,113 ascisse 10 20 30 arctinate 0,004 0,033 0,113 ascisse 10 20 30		-	ascisse	IO	20	30	40	50	09	- 70	75	80	- 06	100	105,568
ascisse 10 20 30 ascisse 10 20 30 ascisse 10 20 30 crdinate 0,006 0,052 0,175 ascisse 10 20 30 crdinate 0,006 0,049 0,166 ascisse 10 20 30 crdinate 0,006 0,047 0,158 ascisse 10 20 30 crdinate 0,004 0,033 0,113 ascisse 10 20 30 crdinate 0,004 0,033 0,113 ascisse 10 20 30 crdinate 0,004 0,029 0,099 ascisse 10 20 30 crdinate 0,000 0,002 0,099 ascisse 10 20 30 ascisse 10 20 30 ascisse 10 20 30		400	ordinate	0,007	0,058	761,0	0,467	0,913	1,578	2,504	3 051	3,694	5,158	6,889	7,974
ordinate 0,007 0,055 0,189 ordinate 0,006 0,052 0,175 ordinate 0,006 0,049 0,166 ascisse 10 20 30 ordinate 0,006 0,047 0,158 ascisse 10 20 30 ordinate 0,005 0,039 0,131 ascisse 10 20 30 ordinate 0,004 0,033 0,113 ascisse 10 20 30 ordinate 0,004 0,029 0,099 ascisse 10 20 30 archinate 0,003 0,026 0,099 ascisse 10 20 30 ascisse 10 20 30 ascisse 10 20 30		-	ascisse	OI	20	30	40	50	09	70	75	80	06	100	105,628
ascisse		425	ordinate	100,0	0,055	681,0	0,440	0,859	1,485	2,330	2,884	3,475	4,975	6,479	7,507
ordinate 0,006 0,052 0,175 ordinate 0,006 0,049 0,166 ordinate 0,006 0,047 0,158 ordinate 0,005 0,039 0,131 ascisse 10 20 30 ordinate 0,004 0,033 0,113 ascisse 10 20 30 ordinate 0,004 0,033 0,113 ascisse 10 20 30 ordinate 0,004 0,029 0,099 ascisse 10 20 30 ordinate 0,003 0,026 0,088 ordinate 0,003 0,026 0,088 ascisse 10 20 30		-	ascisse	OI	20	30	40	50	09	70	75	80	06	100	105,679
ascisse 10 20 30 ascisse 10 20 30 crdinate 0,006 0,049 0,166 ascisse 10 20 30 ordinate 0,005 0,039 0,131 ascisse 10 20 30 ordinate 0,004 0,033 0,113 ascisse 10 20 30 ordinate 0,004 0,029 0,099 ascisse 10 20 30 ordinate 0,000 0,002 0,099 ascisse 10 20 30 ascisse 10 20 30 ascisse 10 20 30		450	ordinate	90000	0,052	0,175	0,415	0,811	1,400	2,219	2,714	3,278	4,574	111,9	7,092
Ordinate		,	ascisse	OI	20	30	40	50	09	70	75	80	06	100	105,722
ascisse		475	ordinate	90000	0,049	991'0	0,395	692,0	1,328	2,107	2,572	3,108	4,333	5,787	6,721
ordinate 0,006 0,047 0,158 0 ascisse 10 20 30 ordinate 0,005 0,039 0,131 0 ordinate 0,004 0,033 0,113 0 ordinate 0,004 0,029 0,099 0 ascisse 10 20 30 0,099 0 ascisse 10 20 30 0,099 0 ascisse 10 20 30 0,099 0 ascisse 10 20 30 0,098 0,099 0,099 0 ascisse 10 20 30 0,098 0,099)	ascisse	OI	20	30	40	50 .	09	70	75	80	06	100	105,759
ascisse		2 000	ordinate	900'0	0,047	0,158	0,374	0,730	1,260	2,000	2,439	2,956	4,115	5,596	6,387
Ordinate		1 000	ascisse	OI	20	30	40	50	09	70	75	80	06	100	105,863
ascisse		009	ordinate	9000	0,039	0,131	0,312	609'0	1,053	1,669	866,1	2,458	3,427	4,573	5,326
ordinate 0,004 0,033 0,113 ordinate 0,004 0,029 0,099 ordinate 0,004 0,026 0,099 ordinate 0,003 0,026 0,088 ordinate 0,003 0,026 0,088		1	ascisse	01	20	30	40	50	09	70	75	80	06	001	105,926
ascisse		7 007	ordinate	0,004	0,033	0,113	0,267	0,522	0,902	1,427	1,735	2,107	2,935	3,916	4,566
ordinate		-	ascisse	Ino	20	30	40	50	. 09	70	75	80	06	100	105,965
ascisse		800	ordinate	0,004	0,029	6600	0,234	0,456	0,788	1,247	1,534	1,837	2,567	3,427	3,996
ordinate 0,003 0,026 0,088 30 30		1	ascisse	OI	20	30	40	50	09	70	75	80	06	100	106,000
ascisse Io 20 · 30		008	ordinate	0,003	0,026	0,088	0,208	0,406	102,0	1,108	1,342	1,635	2,281	3,043	3,553
		-	ascisse	OI	20 .	30	40	50	09	70	75	80	06	100	106,014
ordinate 0,003 0,023 0,079		0001	ordinate	0,003	0,023	0,079	0,187	0,365	0,630	1,008	1,229	1,478	2,043	2,738	3,198

Raceordi parabellel

Ascisse nd ordinate della curva di raccordo

3" Case (Tav. IV fig. 8)

Corre & Harmine principle of Impleme compress for 166 o 100 m. Lungherm & Lancierto paradeline = 64. Origine & selected paradeline a.m. 36 dal pante A.

Section of the Party and Party	***	i			CHD	KATT!	CHRESS	CREDINATE CORRESPONDENTE AL RAGGO	I ALR	1000			
KACOH CRIME CLEAYE	11 11 11			ultrams, parabella	and Salah				3	Patrick of	All and discount	2	I
	and man	100.0	20.0	100	9 1	3.7	60	1.5	斯克	9,114	12.50	8 %	14, Ann
R = 175 R = 174, 143 R - R = 0,6837	11	100	11	$\Lambda, \frac{1}{2}$	3 1	1,194	重量	: 5	# 5	3 th	900	8 13	110
	and and and	1000	部語	90 July 00 Jul	100	T 100	1///	# 17	=Ē	8 H	9.1	12/14	1773
# - # - # - # - # - # - # - # - # - # -	and and	東井	R III	10	11210	3.5	-00 -079	14	11 1	6117	2.5	8 17 1	3,77
R - 255,40 R - R = 0,600	11	2 7	15	5.5	915	15	3 5	2.5	事	50 fbs.	\$ 10 20 20 40 40 40 40 40 40 40 40 40 40 40 40 40	100	E (E)
100 mm = 100	and a section is	out.	Hi3	# F	H.S	a j	2.5	115	地震	是 (E)	8 17	19	130
N - 200 N - 210, 530	1	10	8	89	1000	3 5	100	4.5	n	2 104	2.5	8 3	000 (14-44)

	1	1	1		/	1							
= 325	(ascisse	OI	20	30	40	50	09	70	75	80	06	100	110
$R - R_i = 324, 539$	ordinate	60000	890,0	0,231	0,547	1,068	1,847	2,936	3,597	4,334	6,056	8,101	10,477
= 350	ascisse	OI	20	30	40	50	09	70	75	80	06	100	011
R - R, = 349, 572	ordinate	8000	0,063	0,214	0,508	2660	1,717	2,726	3,339	4,025	2,618	7,042	102,6
R = 375	ascisse	oi	20	30	40	50	09	70	75	80	06	100	110
$R_{-} = 374,600$ $R_{-} = 0,400$	ordinate	100,0	0,059	0,200	0,474	0,926	1,601	2,542	3,113	3,752	5,237	866,9	9,042
= 400	ascisse	10	20	30	40	50	09	70	75	80	06	100	OII
R = R, = 399, 625	ordinate	100,0	0,056	0,188	0,444	898,0	1,501	2,382	2,917	3,515	4,905	6,554	8,464
= 425	ascisse	10	20	30	40	.50	09	70	75	80	90	100	011
$R - R_i = 424,041$	ordinate	0,007	0,052	0,176	0,418	0,817	1,412	2,241	2,744	3,307	4,613	6,167	7,957
= 450	ascisse	OI	20	30	40	50	09	70	75	80	06	100	110
$R_{\rm r} = 449,667$ $R_{\rm r} = 0,333$	ordinate	90000	0,049	0,167	0,395	0,773	1,333	2,115	2,591	3,121	4,354	5,815	7,507
R = 475	ascisse	10	50	30	40	50	09	70	75	80	06	100	110
$R - R_i = 474,684$ $R - R_i = 0,316$	ordinate	90000	0,047	0,158	0,374	0,731	1,266	2,004	2,432	2,956	4,123	5,506	7,111
= 500	ascisse	OI	20	30	40	50	09	70	75	80	06	100	110
R - R' = 499, 70 R - R' = 0,300	ordinate	90000	0,044	0,150	0,356	0,694	1,201	1,904	2,333	2,808	3,915	5,227	6,746
1	ascisse	OI	20	30	40	50	09	70	7.5	80	06	100	011
R - R, = 599, 750	ordinate	0,005	0,037	0,125	0,296	0,578	1,000	1,585	1,940	2,303	3,259	4,349	5,620
007 =	ascisse	01	20	30	40	50	09	70	75	80	06	100	OII
R - R, = 699, /86	ordinate	0,004	0,032	0,107	0,254	0,496	0,857	1,358	1,663	2,003	2,791	3,804	4 801
1 00	ascisse	OI	20	30	40	50	09	70	75	80	06	100	IIO
$R - R_i = 0.187$	ordinate	0,003	0,028	0,094	0,222	0,434	0,750	1,189	1,454	1,752	2,451	3,257	4,199
006 =	ascisse	01	20	30	40	50	09	70	75	80	06	100	OII
R - R = 0,167	ordinate	0,003	0,025	0,083	861,0	0,386	299,0	1,055	1,290	1,557	2,170	2,904	3,690
= 1000	ascisse	01	20	30	40	50	09	70	. 75	80	90	100	011
R - R = 0, 150	ordinate	0,003	0,022	0,075	8/11,0	0,347	0090	0,950	1,163	1,401	1,952	2,603	3,356
					-	-						1	1

Raccordi parabolici

Archine ed ordinate della curva di ruccordo

4º Caso (Tav. IV fig. 9)
Raccordi con spostamento
della curva primitiva

Curve di tracciato primitivo di lunghezza fra 103 e 50 m. Lunghezza del raccordo parabolico m. 40. Origine del raccordo parabolico a m. 20 dal punto A.

	CITDAE		ORI	ORDINATE CORRISPONDENTI AI RAGGI	RRISPONDE	NTI AI RA	199		
KAGGI DELLE CO	OKVE		sull' ar	sull' arco parabolico		S	sull' arco di raccordo	accordo	
		×		metri					
R = 150	ascisse	01	20	30	40	50	09	65	70
1+3,	ordinate	0,028	0,223	0,753	1,786	3,487	6,026	7,662	9,570
= 175	ascisse	10	20	30	40	50	69	65	70
R - R = 0,381	ordinate	0,024	161,0	0,644	1,527	2,982	5.754	6,552	8,184
= 200	ascisse	. 01	20	30	40	50	09	65	70
R - R, = 199, 600	ordinate	0,021	991,0	0,563	1,335	2,067	4,506	5,729	7,155
R = 225	ascisse	10	20	30	40	50	09	65	. 70
0 ==	ordinate	810,0	0,148	0,501	1,186	2,317	4,005	2,091	6,359
250	ascisse	10	20	30	40	50	09	65	70
	ordinate	4007	0,133	0,450	1,067	2,104	3,520	4,355	5,356
	ascisse	IO	20	30	40	50	09	65	70
R - R, = 2/4, 138	ordinate	0,015	0,121	0,400	0,970	1,885	3,170	3,953	4,830
R = 300	ascisse	10	20	30	40	50	09	65	70
	ordinate	410.0	1111,0	0,375	6880	1,727	2,903	3,619	4,421

-	_	_				_	_										_			_			_		$\overline{}$
04	407	٥	2 7 2 3	0	3.524	0	3,305	0	3 109	70	2,931	20	2,780	0	2,640	0	2,199	0/	1 883	0	1,64	0	1,465	0	1,319
65	3,338	65	3,097	65	2,885	65	2,707	65	2,547	65	2,410	65	2,277	65	2,163	.59	1,801	65	1,543	65	1,431	65	1,271	65	1,144
09	268	9	2,485	09	2,314	09	13,1	99	2,044	09	I 935	69	1,828	9	1, 36	09	149	09	1,239	0,9	1 054	60	0 964	99	0.868
50	1,594	20	1,4 9	50	1,376	50	1,294	50	1,217	30	1,155	20	1,088	30	1,031	30	0.862	50	0.758	220	0 646	20	0 5 5	20	0,518
or	0,82	0	9 0	40	0, 1	oţ	99,0	40	0,62	4	(dil)	3	1610	5	6333	o	O, 4	0	0,38	40	33	4	94196	4	0,457
30	0,346	30	0,321	30	0,300	.30	0,281	30	0,265	30	0,250	30	0,237	30	0,225	30	881,0	30	191'0	30	0,141	30	0,125	30	0,113
20	0,102	20	0,095	20	680,0	20	0,083	20	8,000	20	0,074	20	0,070	20	290,0	20	0,056	20	0,048	20	0,042	20	0,037	20	0,033
OI	0,013	OI	0,012	01	0,011	OI	0,010	01	0,010	OI	60000	OI	600,0	OI	800,0	OI	200,0	OI	90000	OI	0,005	OI	0,005	10	0,004
ascisse	ordinate	585 585 585 585 585	ordinate	ascisse	ordinate	ascisse	ordinate	ascisse	ordinate	ascisse	ordinate	ascisse	ordinate	ascisse	ordinate	ascisse	ordinate	ascisse	ordinate	ascisse	ordinate	ascisse	ordinate	ascisse	ordinate
= 325	R - R, = 324, 795	R = 350	R, = 349,810	R = 375	R - R = 0, 178	R = 400	R - R, = 399, 833 (= 425	R - R, = 424, 843	R == 450	R - R, = 449, 852	R = 475	R - R = 0.140	R = 500	R - R, = 499, 867	R = 600	R - R, = 599, 889	1 =	R, = 699, 905 R - R, = 0, 095	008 =	R - R, = 0,083	R = 900	R - R, = 0,075	R = 1000	R - R, = 999, 933

Raccordi parabolici

Ascisse corrispondenti alle sopraelevazioni della rotaia esterna

l° Caso.

_															
Î		ASCI	SSE CO	RRISPO	NDENT	i ALLE	SOPRA	ELEVA	IONI P	EI RAG	igi sot	TOINDI	CATI		
١					Veloci	ità fino	а 60	chilom	etri al	l'ora					
1	ate)	dn m. 182	sup. a 189	30p. a 204	222	243	268	300 a	340	392	463	566	728		
1	ordin	fine a	fino a	fino a	600 a	6no a 268	300 a	340	392	6no a	600 a 566	fino a 728	fino a 1019		
1	Sopraelevazioni (ordinate)				Veloci	Velocità fino a 80 chilometri all'ora									
	vazio	da m. 303	314	sup. a	sup. a	sup. a 404	зир. а 446	япр. в 499	sup. a 565	кир. а 652	770	942	-		
	raele	fino a	5no a 339	600 a	6no a 404	fine a 446	fine a 499	бяо а 565	652	fine a 770	fine a	fine a 1241	2		
	Sop		Velocità fino a 100 chilometri all'ora												
		da m. 458	475	sup. a 513	sup. a 557	япр. а [610	sup. a 675	sup. a 754	sup. a	986		16.	_		
		tino a	fino a 513	fino a 557	610	675	fino a 754	600 a 855	fine a	6no a 1165	72	100	100		
	m,	m.	m.	າກ.	m.	m,	m.	m,	ηз,	m,	ın,	m.	nı.		
ı	0.01	5,-	5,39	5,81	6,37	7,-	7,78	8,75	10,-	11,67	14,-	17.5	23,4		
	0.02	10,=					15,56		20,-			35, -	46,66		
I	0.02						23,33	26,25	30 -			52,5	70, -		
ı		15,-	, -			28,-	31,11		40,-	35, -		70, -	70, -		
l	0,04	20,-	21,54		25,46					46,67		70,-			
I	0,05	25,-			31,82	35 -	38,89		50,-	58,33	70,-				
l	0.06	30,-		35, =	38,18	42,-	46,67		6a,-	70, -					
	0.07	35 -		40,83	44.54	49,-	54,44	61,25	70 -						
	0,08	40,-				56,-		70, -		61					
۱	0,09	45,-			57.27		70, -								
١	0,10	50 -		58,33		70,-									
1	0,11	55 -		64,17	70, -										
	0,12	60,-	1.	70, -											
	0,13	65 -	70,-												
	0,14	70 -													
1															

Raccordi parabolici

Ascisse corrispondenti alle sopraelevazioni della rotaia esterna

2 e 3º Caso

						_							
		ASCIS	SE COR	RISPO	IDENTI	ALLE	SOPRAI	ELEVAZ	IONI PI	EI RAGI	SI SOT	TOINOH	CATI
					Veloci	à fino	a 60	chilom	etri al	l'ora			
ı	ate)	da m 182	sup. a 189	204	sup. a 222	sup. a 243	268	300 sup. n	340	392	sup. ո 463	566	728
١	rdin	189	204	fino a	tino a	6no a 268	fine a	fino a	fine a 392	fine a 463	fine a	fine a .	fino a 1019
	Sopraelevazioni (Ordinate)			Ì	Veloci	à fino	a 80	chilom	etri al	l'ora			
	TOZZIOT	da m. 303	sup. a 314	339	369	sup. a 404	446	чир. а 499	sup. a	sup. a	sup. a 770	sup. a	_
	aeler	я́во а 314	fino a	600 a	fine a	tino a	fino a 499	6no n 565	652	fine a 770	fine a	fine a	- 2
	Sopr		000	-00 [1111	a 100	100			5 T III	15	
Ĭ	ĺ	da m.	sup. a	sup a	sup 2	sup. a	sup. a	4up. a	ութ. ո 9 55	sup. a 986	200		-
		fino a	fino a	fino a	fino a	fino a	fino a	fino a	fino a	fino a			
		475	513	557	610	675	754	855	986	1165		-	-
1	10,	ın.	m,	m.	1315	nı.	111.	m,	m,	m,	1114	лі.	m.
	0.01	4,29	4,62	5,-	5,46	6, -	6,67	7, 5	8,57	10, -	12, -	15, -	20, -
	0,02	8,57	9,23	10, -	10,91	12, -	13,33	15,-	17,14	20, ~	24, -	30, -	40, -
ı	0,03	12,86	13,85	15,-	16,36	18, -	20, -	22, 5	25,71	30, -	36,-	45,~	60, -
	0,04	17,14	18,46	20, -	21,82	24, -	26,67	30, -	34,29	40, -	48, -	60, -	
	0,05	21,43	23,08	25,-	27,27	30, -	33,33	37, 5	42,86	50,-	60,-		
	0 06	25,71	27,69	30, -	32,73	36, -	40, -	45	51,43	60, -			
	0.07	30, -	32,31	35	38,18	42,-	46,67	52, 5	60, -				
	0 08	34,29	36,92	40, -	43,64	48, -	53,33	бо, –					
	0.09	38,57	41,54	45, -	49,09	54, -	60, -						
	0 10	42,86	46,15	50, -	54,54	60, -							
	0,11	47,14	50,77	55,-	60, -								
	0.12	51,43	55,39	60, -									
	0.13	55,72	60, -										
	0 14	60, -											
												,	

Raccordi parabolici

Ascisse corrispondenti alle sopraelevazioni della rotaia esterna

4 Caso.

_														
		ASCI	SSE CO	RRISPO	NDENT	ALLE	SOPRA	ELEVAZ	IONI P	EI RAG	GI SOT	FOINDE	CATE	
					Veloci	ță fino	a 60	chilon	etri al	l'ora				
	are)	da m. 182	зир. а 189	204	222	sup. a 243	268	300	340	392	463	566	728	
	Sopraclevazioni (Ordinate)	fino a	600 a 204	fine a 222	1ino a 243	fino a	ino a	340	392	бпо а 463	566	728	1019	
1	.ie				Veloci		n 80							
	wazio	da m 303 fino a	314 fino a	339	369	404	446 fino a	499 600 a	565 line a	sup. a 652 fine a	770 fino a	942	-	
	racle	314	339	6no a 369	fine a 404	fino a	499	565	652	770	942	1211	-	
	Sop													
		da m. 458 fine a	475	513	50p. a 557 fine a	610	675	754 fine a	855 fine a	986 600 a		Si		
	E	475	513	557	610	673	fine a 751	855	986	1165		-		
l	MJ.	11%	ın.	m.	111.	nt.	10,	ın,	ni.	111.	In.	ħμ	m.	
	0,01	2,86	3,08	3,33	3,64	4	4,44	5,-	5,71	6,67	8, -	10, -	13,33	
	0,02	5,71	6,16	6,67	7,27	8, -	8,89	10, -	11,43	13,33	16,-	20, -	26,67	
I	0,03	8,57	9,24	10, -	10,91	12, +	13,33	15, -	17,14	20,-	24, -	30,-	40,-	
	10,0	11,43	12,31	13,33	14,55	16, -	17,78	20, -	22,86	26,67	32, →	40		
	0,05	14,29	15,39	16,67	18,18	20, -	22,22	25,-	28,57	33-33	40, -			
	0,06	17,14	18,47	20, -	21,82	24, -	26,67	30, -	34,29	40, -				
	0,07	20, -	21,54	23,33	25,46	28, -	31,11	35, -	40, -					
	0,08	22,86	24,62	26,67	29,09	32, -	35,56	40, -			l			
	0,09	25,71	27,70	30, -	32,73	36,-	40, -							
	0,10	28,57	30,77	33,33	36,36	40, -								
	0,11	31,43	34,85	36, 67	40, -									
	0,12	34,29	36,93	40, -		11								
	0,13	37,14	40, -											
	0,14	40, -												
-														

TABELLA N. 11.

Giuochi per la dilatazione delle rotaie.

Grossezza		LIN	EMPERATU	JRA					
delle piastrine	Rotale da 6	,30 e 6 m.	Rotaie d	a 9 m.	Rotaic de	12 m.			
in millimetri	da gradi	a gradi	da građi	a gradi	da gradi	a gradi			
2	-l- 35	+	+ 37	-1-	-1- 40	+			
3	24	-I- 35	28	+ 37	+ 35	-H 40			
4	+ 13	+ 24	+ 19	+ 28	+ 30	+ 35			
5	-{- 2	- - 13	- - 10	+ 19	+ 25	+ 30			
6	- 9	- - 2	0	+ 10	+ 20	+ 25			
7		п	- 9	0	- - IS	20			
8					- - 10	+ 15			
9					+ 5	+ 10			
10					0	+ 5			
11					- 5	0			
12					- 10	— 5			

Armamento con rotaie normali da m. 12 e con rotaie corte da m. 11,94 e m. 11,88.

Raggio		FILA DELI	E ROTAIE		
delle	Esterna		Interna		POSTO OCCUPATO
in m.	Normali	Normali	Corte	Corto	DALLE ROTALE CORTE
111 111.	da m. 12	da in, 12	da m. 11.94	da m 2x.88	
150	1	_	-	I	I
160	8		1	7	1*, 2*, 3*, 4, 5*, 6*, 7* 8*
170	17		4	13	1 °, 2 °, 3 4 °, 5 °, 6 °, 7, 8 ° 9 °, 10 °, 11 12 ° 13 °, 14 °,
					9°, 10°, 11 12° 13°, 14°.
180	3		1	2	1°, 2 3°
190	19	_	8	11	1 2 3 4 5 " 6 7 " 8 ".
190					0 10 11 12 13 13 14
				-	15", 16, 17", 18 19",
200	2		I	1	1, 2 *,
225	3	100	2	I	1 2 4. 3
250	5	_	4	= 1	I. 2 3 4.
275	II	_	10	1	1 2, 3 4 5, 6 7 8, 9 10, 11,
300	1		1		1
350	7	1	6	_ '	1 2 3 5 6 7
400	4	1	3		1. 2-3 4
450	3	I	2	-	1 3
500	5	2	3	_	1 3.5.
550	11	5	6		1 3.5.7.9 11.
600	2	1	1		1 - 2
650	13	7	6	_	2 4, 6, 8, 10, 12,
700	7	4	3		2, 4, 6.
750	5	3	2		2 4
800	8	5	3		2 4-5 . 7.
850	17	11	6	-	2 5, 8, 10, 13, 16.
900	3	2	t		2,
950	19	13	6	-	2, 5, 8, 12, 15, 18,
1000	10	7	3		2, 5-6.9

⁶ I numeri con asterisco indicano il posto occupato dalle rotale da mi 11,88 e quelli senza asterisco quello occupato dalle rotale da m. 11,94.

NB. Due numeri chiusi in un rettangolo indicano che è indifferente prendere l'uno o l'altro,

Armamento con rotaie normali da m. 9 e con rotaie corte da m. 8.945

Raggio	FILA	DELLE ROT	TAIE	
delle	Esterna	Inte	тиа	POSTO OCCUPATO
in m.	Normali	Normali	Corte	DALLE ROTAIE CORTE
	da m. g	da m. 9	da m. 8 945	
250	I	_	1	τ,
300	6	I	5	1. 2 3-4 . 5 6.
350	7	2	5	1. 3. 4. 5. 7-
400	8	3	5	1.3. 4-5,68
450	9	4	5	t. 3. 5 7 9.
500	2	r	ī	[- 2 ,
550	11	G	5	2, 4, 6, 8, 10,
600	1.2	7	5.	2, 4. 6-7, 9, 11,
65Q	13	8	5	2 4, 7, 10, 12,
700	14	9	5	2, 5, 7 - 8 , 10, 13,
750	3	2	I	2,
800	16	11.	5	2 5, 8-9 . 11, 15,
850	17	12	5	2 6, 9, 12, 16,
900	18	13	5	2, 6, 9 - 10 13, 17,
950	19	14	5	2, 6, 10, 14, 18,
1000	4	3	1	2-3

NB. Due numeri chiusi in un rettangolo indicano che è indifferente prendere l'una o l'altro.

Armamento con rotaie normali da m. 9 e m. 6 e con rotaie corte da m. 894 e m. 5.96

В	FILA	DELLE RO	TAIE	
Raggi delle		Inte	TH3	Posto occui⊕ro
in m.	Normali da	Normali da		DALLE ROTAIE CORTE
225	1		1	I,
250	10	1	9	1 2.3 4 5-6 , 7.8.9.10.
27	11	2	9	1.2 3 5 6 7.9.10 11
300	4	1	3	1. 2-3 4.
350	111	4	7	1, 3 4 6 7 9 10.
37	5 5	2	3	1.3.5.
400	7	3	4	1.3 5.7.
45	2	1	1	1-2,
50	11 0	6	5	2 4, 6 8 10.
52	5 7	4	3	2 4.6.
55	0 5	3	2	2 4.
60	0 8	5	3	2 4-5 7
65	0 3	2	1	2
67	5 3	2	1	2
70	0 3	2	1	2
75	0 10	7	3	2. 5-6 9
80	7	5	2	2. 6
82	15 11	8	3	2 6, 10
89	50 4	3	ı	2-3.
90	4	3	I	2-3
9:	50 13	01	3	3 6.9.
9	75 13	10	3	3.7,11
101	9	7	2	3.7.
		1		

NB. Due numeri chiusi in un rettangolo indicano che è indifferente prendere l'una a l'altra.

Armamento con rotaie normali da m. 9 e m. 6 e con rotaie corte da m. 8.91 e m. 5.94

Raggio	FILA	DELLE RO	TAIE	
delle	Esterna	Inte	tna	POSTO OCCUPATO
jurve in m.	Normali da			DALLE ROTALE CORTE
·	m, 9 e m. 6	п. 9 е п. 6	m. 8.gt e 5.g4	
150	z	-	I	ī
200	4	1	3	1. 2-3 4.
250	5	2	3	1 3.5
300	2	I	1	1 - 2
350	7	4	3	2 4.6.
400	8	5	3	2. 4-5 .7
450	3	2	ī	2.
500	10	7	3	2, 5-6 9
550	11	8	3	2, 6, 10.
650	4	3	1	2-3
650	13	10	3	3 7 (806)
700	14	11	3	3. 7-8 12.
750	5	4	11	3.
Soo	16	т3	3	3 8-9 . 14.
350	17	14	3	3. 9. 15.
900	6	5	1	3-4
950	19	16	3	4. 10 16.
1000	20	1.7	3	4 10-11 17.

NB. Due numeri chinsi in un rettangolo indicano che è indifferente prendere l'una a l'aftro.

Armamento con rotaie normali da m. 6.30 e con rotaie corto da m. 6.26.

Raggio	FILA	DELLE RO	TAIE	
delle	Esterna	Inte	rna	POSTO OCCUPATO
in in.	Normali da m. 6.30	Normali da m. 630	Corte da m, 6.25	DALLE ROTALE CORTE
250	z	_		
300	5	1	4	1 2 4 5
350	3	1	2	1 3.
400	17	7	01	2, 3, 5, 7, 8, 10, 11, 13, 15, 16,
450	2	Т	ı	1-2
500	15	8	7	2 4 6 8, 10 12 14
600	18	11	7	2.57 9-10 12 14 17
700	3	2	1	2
800	7	5	2	2.6.
900	4	3	Ť	2-3
1000	4	3	1	261

NB. Due numeri chiusi in un restangolo indicano che è indifferente prendere l'uno o l'alteo.

TABELLA N. 17.

Raccordo dei cambiamenti di livelletta

Pendenza per mille	Lunghezza delle tangenti	ORDI	NATE
Differenza della pandanza Sonima della pandanza	o distanzo dal punto d'incontro delle livellette	all'incontro delle tangenti	a metà delle tangenti
er .	b	ć	d
nı.	m,	ıń.	ıu,
6	9,00	0,014	_
7	10,50	0,019	-
8	12,00	0,024	0,006
9	13,50	0,030	0,008
10	15,00	0,038	0,010
ž 1	16,50	0,046	0,012
12	18,00	0,054	0,014
13	19,50	0,063	0,016
14	21,00	0,074	0,019
15	22,50	0,084	0,021
16	24,00	0,096	0,024
17	25,50	0,109	0,027
81	27,00	0,122	0,030
19	28,50	0,136	0,034
20	30,00	0,150	0,038
2 l	31,50	0,165	0,042
22	33,00	0,181	0,046
23	34.50	0,199	0,050
24	36,00	0,216	0,054
25	37,50	0,235	0,059
26	39,00	0,254	0,063
27	40,50	0,274	0,068
28	42,00	0,294	0,074
29	43,50	0,315	0,079
30	45,00	0,338	0,084
31	46,50	0,361	0,091
32	48,00	0,384	0,096
33	49,50	0,408	0,102
34	51,00	9.433	0,109
35	52,50	0,460	0,115
36	54,00	0,486	0,122

TABELLA N. 18.

Passaggi a livello.

							Larghezza	Larghezza d	ell'intervalla
	DEL PA	CONDIZ SSAGGIO		ELLC)		del binario in corri- spoudenza del passaggio a livello	fra gotala e controrotala	alle estremità delle controrotale
					П		ıń	m/m	m/m
In ret	tilineo od in	curva di r	aggio su	periore	a m	650	1 445	60	100
In cur	ve di raggio	di m. 65	o ed infe	er. fino	a »	500	1 450	65	105
»	»	inferiore	a m. 500) c »	>>	400	1 455	70	110
»	*	»	» 400) » »	*	120	1.460	75	115
»	»	*	» I20				1 465	75	115

Inclinazione della piattaforma stradale nelle curvo.

1° CASO Velocità Na 6º km. all'ora 204 222 243 268 200 340 300 340 392 463 566 28	Authorities with producting strangic mais out to	2º CASO Linee principali Linee secondarie	Velocità semple in rio doppio semplice binario	fino a 100 km. all'ora	A 20 A A A A	m. m	am. 475 » 513 o 17 o 65 o 07 o 14 o 58 o 0	513 > 557 0 20 0 63 0 10 0 17 0 56 0 08	557 > 610 0 22 0 62 0 13 0. 19 0 55 0 11	610 » 675 0 24 0 60 0 6 0 21 0 54 0 13	675 > 754 0 26 0 59 0 9 0 23 0,53 0 16	754 > 855 0 29 0 58 0.22 0 25 0 52 0 19	855 * 986 0 31 0.5 0 25 0 27 0 51 0 22	986 > 1165 0 33 0 55 0 28 0 30 0 50 0 25	1164 > 1424 0.36 0.44 0.31 0.32 0.48 0.28	1424 » 1831 0 38 0 53 0 34 0 34 0 47 0 30	200
Petocità 60 km. all'ora 89 204 222 243 268 300 340 392 463 566 28	Inasigne actio p	2º CASO Velocità a 8º km, all'ora			303 B a	23	8	7	*	è	565	652	7-1	0.42	× 1211	2000	
	ALLC	O TASO	7	60 km. all'ora	RAGGI	82 = 89	89 204	204 222	222 243	243 - 268	268 300	300 340	340 392	392 463	463 566	566 28	0 ==

Tracciamento delle curve per ascisse ed ordinate.

Ascisse	Ordinate	Ascisse	Ordinate	Ascisse	Ordinate	Ascisse	Ordinate			
m.	ın,	m,	m.	m,	in.	m.	m.			
		Ra	iggio —	100 met	ri.					
5	0, 13	30	4, 61	55	16.48	80	40,00			
10	0, 50	35	6, 33	60	20,00	85	47.32			
15	1, 13	40	8, 35	65	24, 01	90	56.41			
20	2, 02	45	10, 70	70	28.59	95	68, 78			
25	3. 1	50	13, 40	75	33, 86	001	100,00			
		R	aggio	110 met	ri.					
5	0, 11	30	4. 17	55	14.74	80	31.50			
10	0,46	35	5. 72	60	17.81	85	40, 18			
15	1,03	40	7.53	65	21, 26	90	46.75			
20	1, 83	45	9.63	70	25, 15					
25	2, 88	50	12,02	75	29.53					
Raggio — 120 metri.										
5	0, 11	30	3, 81	55	13.35	80	30, 56			
10	0,42	35	5, 22	6 0	16, 07	85	35 30			
15	0, 94	40	6, 86	65	19. 13	90	40, 64			
20	1, 68	45	8, 76	70	22, 53					
25	2, 63	50	10,91	75	26, 32					
		R	aggio	130 met	ari.					
5	0,10	30	-33 3.51	55	12, 21	80	27.53			
10	0, 39	35	4.80	60	14, 67	85	31.64			
15	0, 87	40	6, 31	65	17.42	90	36, 19			
20	1.55	45	8, 04	70	20, 46					
25	2, 43	50	10, 00	75	23, 82					
Raggio — 140 metri.										
5	0.09	30	3, 25	55	11, 26	80	25. [1			
10	0, 36	35	4. 44	60	13, 51	85	28, 76			
15	0, 80	40	5. 84	65	16,00	90	32, 76			
20	1.44	45	7.43	70	18, 76	95	37. 16			
25	2, 25	50	9, 23	75	21, 78	100	42, 02			

6						700					
	Ascisse	Ordinate	Ascisse	Ordinate	Ascisse	Ordinate	Ascisse	Ordinate			
ı	m,	m,	m.	In.	m.	101.	£11.	m,			
ı			R	aggio — :	150 met	ri,					
ı	5	0, 08	30	3. 03	55	10, 45	80	23, 11			
ı	10	33	35	4, 14	60	12, 52	85	26 41			
1	15	0.75	40	5- 43	65	14.81	90	30 00			
ı	20	I. 34	45	6,91*	70	17.31	95	33 92			
ı	25	2, 10	40 50	S. 58	75	20, 10	100	38, 20			
				0.30	13	10, 10	1	35.25			
	Raggio — 160 metri										
	5	0.08	30	2.84	55	9.75	80	21.44			
	10	0, 31	35	3.88	60	tr, 68	85	24.44			
ı	1.5	0, 71	40	5. 08	65	13, 80	90	27. 71			
ı	20	1, 25	45	6, 46	70	16, 13	95	31, 26			
ı	25	1.97	50	8, 01	75	18,67	100	35, 10			
	Porgin 470 metri										
	Raggio — 170 metri.										
ľ	5	0, 08	30	2, 67	5.5	9. 14	80	20,00			
ı	10	0, 29	35	3, 64	60	10.94	85	22.78			
ı	15	0, 66	40	4.77	65	12, 92	90	25.78			
1	20	1, 18	45	6, 06	70	15.08	95	29. 02			
	25	1.85	50	7.52	75	17.44	100	32,152			
			R	aggio —	180 me	tri.					
	⊳ 5	0.07	30	2, 52		8,61	1 80	18,75			
ľ	10	0, 28	35	3.44	55 60	10, 29	85	21. 34			
	15	0, 63	40	4. 50	65	12, 15	90	24. 12			
	20	1, 11	45	5. 72	70	14. 17	95	27, 11			
	25	1.75	50	7, 08	75	16. 37	100	30. 33			
		1 .,,,		1 77	1 /3	1,	1	1 333			
	Raggio — 190 metri.										
	5	0, 07	30	2.38	55	8, 14	80	17.65			
	10	0, 26	35	3. 25	60	9.72	85	20, 07			
	15	0, 59	40	4, 26	65	11,46	90	22.67			
	20	1.06	45	5. 41	70	13.37	95	25.46			
	25	t. 95	50	6. 70	7.5	15.43	100	28, 45			

Ascisse	Ordinate	Ascisse	Ordinate	Ascisse	Ordinate	Ascisse	Ordinate			
m.	tu,	πı,	m.	m	m.	DI-	m,			
		R	aggio —	200 met	tri.		_			
5	0,06	30	2, 26	55	7.71	80	16,70			
10	0, 25	·	3, 09	60	9, 21	85	18, 96			
15	0, 25	35 40	4. 04	65	10, 86	90	21, 39			
20	1,00	45	5, 13	70	12, 65	95	24, 00			
25	1,57	50	6. 35	75	14, 60	100	26, 80			
-3	1, 37	30	V. 33	/ 3	14.00	1 200				
		Ra	aggio :	220 met	ri,					
5	0 06	30	2, 06	55	6. 99	80	15, 06			
10	0, 23	35	2, 80	60	8. 34	85	17. 08			
15	51	40	3.67	65	9 82	90	19. 25			
20	0, 91	45	4.65	70	11, 43	95	21,57			
25	1.42	50	5.76	75	F3, 18	100	24 04			
Raggio — 240 metri.										
	l o ne					1 80	1 77 77			
5	0, 05	30	1, 88	55 60	6. 39 7. 62	85	13. 73			
		35	2. 57		8, 97	90	17. \$1			
15	0, 47	40	3. 36 4. 26	65	10 44	1 1	19.60			
25	1. 31	45 50	5. 27	70	12 02	95	21, 83			
	1	- 30	37	1 /2	12 02	1				
		Ra	aggio — :	260 met	ri.					
5	0, 05	30	T. 74	55	5, 88	80	12,61			
10	0, 19	35	2, 37	60	7, 01	85	14. 29			
15	0.43	40	3, 10	65	8, 26	90	16, 07			
20	0.77	45	3. 92	70	9, 60	95	17. 98			
25	1, 20	50	4, 85	75	11, 05	001	20, 00			
		-		000						
			aggio —				1			
5	0, 04	35	2 20	65	7.65	95	16, 61			
10	0, 18	40	2, 87	70	8, 89	100	18, 47			
15	0, 40	45	3, 64	75	10, 23	110	22, 51			
20	0, 72	50	4, 50	80	11.67					
25	1, 12	55	5. 45	85	13. 21					
30	1, 61	60	6, 50	90	14 86	_				

Ascisse	Ordinate	Ascisse	Ordinate	Ascisse	Ordinate	Ascisse	Ordinate				
H3.	111.	m.	m,	m.	m,	(15-	100-				
		Ra	aggio — 3	300 met	ri,						
10	0, 17	70	8, 28	130	29.63	190	67.84				
20	0, 67	80	10,86	140	34.67	200	76.39				
30	1, 50	90	13, 82	150	40, 20	210	85.75				
40	2, 68	100	17, 16	160	46, 23	1					
50	4, 20	110	20, 89	170	52.82						
бо	6, 06	120	25. 05	185	60, 00						
		R	aggio —	350 met	tri.						
10	0, 14	80	9. 27	150	33-77	220	77.79				
20	0. 57	90	11.77	160	38. 71	230	86, 18				
30	1, 29	100	14, 59	170	44.06	240	95. 25				
40	2, 29	110	17. 73	180	49.83	250	105, 05				
50	3. 59	120	21, 22	190	56.06						
60	5, 18	130	25, 04	200	62, 77						
70	7.07	140	29. 22	210	70,00						
	Raggio — metri 400.										
10	0, 12	I 80	8.08	1 150	29. 19	220	65.93				
20	0, 50	90	10, 26	160	33. 39	230	72.74				
30	1, 13	100	12,70	170	37.92	240	80,00				
40	2,00	110	15, 42	180	42.79	250	87.75				
50	3. 14	120	18, 42	190	48, 01	260	96,03				
60	4. 53	130	21.71	200	53.59	270	104, 87				
70	6.17	140	25, 30	210	59, 56						
		1				<u> </u>					
Raggio — 450 metri,											
10	0, 11	90	9.09	170	33-35	250	75. 83				
20	0.44	100	11, 25	180	37. 57	260	82,71				
30	1,00	110	13, 65	190	42,08	270	90,00				
40	1, 78	120	16, 29	200	46, 89	280	97.72				
50	2. 79	130	19. 19	210	52,01	290	105, 91				
60	4, 02	140	22.33	220	57.44	300	114.59				
70 80	5.48	150	25.74	230	63, 22	310	123, 81				
	7. 17	160	29.41	240	69.34	320	133.61				

									
Ascisse	Ordinate	Ascisse	Ordinate	Ascisse	Ordinate	Ascisse	Ordinate		
m,	m.	m,	111.	nı	m.	nı.	п,		
		R	aggio —	500 met	ri,				
10	0, 10	100	10, 10	190	37.51	280	85.75		
20	0, 40	110	12. 25	200	41.74	290	92.69		
30	0, 90	120	14, 61	210	46. 24	300	100,00		
40	1, 60	130	17, 20	220	51 —	310	107.70		
50	2, 51	140	20,00	230	56.04	320	115, 81		
60	3.61	150	23.03	240	61.37	330	124. 37		
70	4.92	160	26, 29	250	66, 99	340	133.39		
80	6.44	170	29.79	260	72, 92	350	142.93		
90	8, 17	180	33. 52	270	79. 17	T .			
Ragglo — 550 metri.									
10	0, 09	110	11, 11	210	41,67	310	95, 69		
20	0, 36	120	13.25	220	45, 92	320	102, 67		
30	0,82	130	15,58	230	50.40	330	110,00		
40	1, 46	140	18, 12	240	55. 13	340	117, 68		
50	2, 28	150	20, 85	250	60, 10	350	125.74		
60	3, 28	160	23.79	260	65.33	360	134, 19		
70	4.47	170	26, 93	270	70,83	370	143.06		
80	5, 85	180	30, 29	280	76.61	380	152, 38		
90	7.41	190	33, 86	290	82, 67	390	162, 19		
100	9, 17	200	37, 65	300	89.02				
		R	aggio	600 met	ri.				
10	0, 08	120	12, 12	230	45.83	340	105, 63		
20	0.33	130	14. 25	240	50,09	350	112,66		
30	0.75	140	16, 56	250	54. 56	360	120,00		
40	1. 33	150	19.05	260	59. 26	370	127.66		
50	2, 09	160	21.73	270	64, 18	380	135, 67		
60	3.01	170	24. 59	280	69.34	390	144, 04		
70	4. 10	180	27. 64	290	74.74	400	152,79		
80	5. 36	190	30,88	300	80, 38	410	161, 94		
90	6,79	200	34.31	310	86, 29	420	171,51		
100	8, 39	210	37-95	320	92,46				
110	10, 17	220	41.79	330	98, 90				
				,					

	Ascisse	Ordinate	Ascisse	Ordinate	Ascisse	Ordinate	Ascisse	Ordinate		
1	m.	m-	m.	m,	m.	m.	ım.	ín.		
			Ra	aggio —	650 met	ri.				
ļ	10.1	0.00								
Ì	10	0, 08	130	13, 13	250	50,00	370	115, 58		
	20	0, 31	140	15. 26	260	54, 26	380	122,65		
	30	0, 69	150	17.54	270	58.73	390	130,00		
	40	1, 23	160	20, 00	280	63, 40	400	137.65		
i	50	1, 92	170	22, 63	290	68, 28	410	145, 62		
i	60	2. 77	180	25.42	300	73-37	420	153.92		
ı	70	3.78	190	28, 39	310	78.69	430	162, 56		
ı	80	4. 94	200	31.53	320	84. 23	449	171, 56		
į	90	6, 26	210	34, 86	330	90,00	450	180, 96		
	100	7 - 74	220	38, 36	340	96, 01	460	190, 76		
	110	9.38	230	42.05	350	102, 28				
	120	11, 17	240	45-93	360	108,80				
ł										
ı	Raggio — 700 metri.									
ł	10	0, 07	140	14.14	270	54.17	400	125.54		
i	20	0, 29	150	16, 26	280	58. 44	410	132, 64		
	30	0, 64	160	18,53	290	62, 90	420	140,00		
	40	1, 14	170	20, 96	300	67.54	430	147.64		
	50	1, 79	180	23.54	310	72. 39	440	155.57		
	60	2, 58	190	26, 28	320	77. 42	450	163, 81		
	70	3.51	200	29, 18	330	82, 67	460	172.36		
	80	4 59	210	32, 24	340	88, 11	470	181, 25		
	90	5, 81	220	35. 47	350	93 78	480	190 49		
	100	7. 18	230	38, 86	360	99.67	490	200, 10		
	110	8.70	240	42. 43	370	105.78				
	120	10, 36	250	46, 17	380	112, 12				
	130	12, 18	260	50.08	390	118,71		:		
		·					<u> </u>			
	Raggio — 750 metri.									
	10	0, 07	50	1,67	90	5.42	130	11.35		
	20	0, 27	60	2, 40	100	6, 70	140	13, 18		
	30	0,60	70	3. 27	110	8, 11	150	15 15		
	40	1, 07	80	4. 28	120	9, 66	160	17, 27		
				4		4	-	4		

	Ascisse	Ordinate	Ascisse	Ordinate	Ascisse	Ordinate	Ascisse	Ordinate
	ın,	111,	nı.	m.	m,	m.	ın,	m.
Ī	170	19.52	270	50, 29	370	97, 62	470	165, 54
ı	180	21, 92	280	54 22	380	103. 39	480	173.72
	190	24.46	290	58. 33	390	109. 37	490	182, 20
	200	27, 10	300	62, 62	400	115.57	500	190, 98
ı	210	30, 00	310	67 n 6	410	121, 99	510	200, 09
	220	32. 99	320	71, 69	420	128, 63	520	209. 54
	230	36, 14	330	76, 50	430	135, 51	530	219.34
	240	39. 44	340	81, 49	449	142 63		1
ı	250	42.89	350	86, 67	450	150 00		
	260	46 51	360	92 05	460	157.63		
			R	agglo —	800 met	ารรั		
				iqgio	000 11100			
	10	0, 06	150	14, 19	290	54.41	430	125, 39
	20	0, 25	160	16, 16	300	58. 39	440	131.87
	30	0,56	170	18, 27	310	62, 50	450	138, 56
	40	1,00	180	20, 51	320	66, 79	460	145, 48
	50	1,56	190	22. 89	330	71, 23	470	152, 62
ı	6ი	2, 25	200	25.40	340	75.85	480	160,00
	70	3, 07	210	28, 05	350	80, 63	490	167.62
	80	4, 01	220	30, 84	360	85.58	500	175.50
	90	5, 08	230	33. 78	370	90,70	510	183. 64
	100	6, 27	240	36, 85	380	96,01	520	192.05
	1 EO	7. 60	250	40, 07	390	101, 50	530	200, 75
ı	120	9, 05	260	43. 43	400	107, 18	540	209. 75
	130	10, 64	270	46.94	410	113.05	550	219.05
	140	12, 35	280	50, 60	420	119, 12	560	228, 69
		,	Ra	ıggio — i	850 met	ri,		
							7	
	01	0, 06	70	2, 89	130	10,00	190	21, 51
	20	0, 23	8 o	3.77	140	11,61	200	23, 86
	30	0, 53	90	4.78	150	13. 34	210	26, 35
	40	0, 94	100	5. 90	160	15, 19	220	28, 96
	50	1. 47	110	7.15	170	17, 17	230	31.71
	бо	2, 12	120	8,51	180	19. 28	240*	34. 59

Ascisse	Ordinate	Ascisse	Ordinate	Ascisse	Ordinate	Ascisse	Ordinate	
113	m,	žΠ.	ın.	jn.	IR.	m,	111.	
250	37. 60	340	70, 96	430	116,79	520	177.62	
260	40.74	350	75.40	440	122,74	530	185.47	
270	44. 02	360	80,00	450	128, 87	540	193.57	
280	47.44	370	84.76	460	135, 23	550	201.93	
290	51.00	380	89.67	470	141.76	560	210.55	
300	54.70	390	94.75	480	148, 50	570	219.44	
310	58. 54	400	100,00	490	155.45	580	228, 63	
320	62.53	410	105, 42	500	162, 61	590	238, 12	
. 330	66, 67	420	111,01	510	170,00	600	247, 92	
							<u> </u>	
		R	aggio —	900 met	ri.			
01	0,06	170	16, 20	330	62,68	1 490	145.08	
20	0, 22	180	18, 18	340	66, 69	500	151,66	
30	0,50	190	20, 28	350	70, 84	510	158.45	
40	0.89	200	22, 50	360	75.14	520	165.43	
50	1,39	210	24.84	370	79.57	530	172,61	
60	2,00	220	27.30	380	84. 16	540	180,00	
70	2.73	230	29, 89	390	88, 89	550	187.61	
80	3.56	240	32.59	400	93.77	560	195.44	
90	4.51	250	35.42	410	98,81	570	203.51	
100	5.57	260	38.37	420	104,01	580	211,81	
110	6.75	270	41.45	430	109.37	590	220, 37	
* 120	8, 04	280	44. 66	440	114, 89	600	229, 18	
130	9.44	290	48.00	450	120, 58	610	238, 26	
140	10, 96	-300	51.47	460	126, 44	620	247.62	
150	12.59	310	55.07	470	132, 47	630	257. 27	
160	14. 34	320	58, 81	480	138, 69			
Raggio 950 metri.								
10	0, 05	60	1,90	110	6, 39	160	13.57	
20	0, 21	70	2. 58	120	7.61	170	15.33	
30	0.47	80	3.37	130	8, 94	180	17, 21	
40	0, 84	90	4. 27	140	10.37	190	19.19	
50	1.32	100	5, 28	150	11, 92	200	21, 29	

Ascisse	Ordinate	. Ascisse	Ordinate	Ascisse	Ordinate-	Ascisse	Ordinate
in.	117.	יומ	nı.	Ţń,	m,	m,	m,
210	23.50	330	59.16	450	113.34	570	190,00
220	25, 82	340	62.92	460	118.80	. 580	197.60
230	28, 26	350	66.82	470	124, 41	590	205, 42
240	30, 82	360	70.85	480	130, 18	600	213.45
250	33.48	370	75.01	490	136, 12	610	221.71
260	36, 27	380	79.30	500	142, 23	620	230, 21
270	39. 18	390	83.74	510	148, 50	630	238, 94
280	42,20	400	88. 32	520	154, 95	640	247.93
290	45.35	410	93.03	530	161, 58	650	257. 18
300	48,61	420	97.89	540	168, 40	660	266, 70
310	52,00	430	102, 89	550	175.40	670	276, 50
320	55.52	440	108, 04	560	182,60		
10	ا م مد		lggio — 1			1 660	164 84
10	0, 05	190	18, 22	370	70.97	550	164.84
20	0, 20	200	20, 20	58o	75, 01	560	171.51
30	0, 45	210	22, 30	390	79.19	570	178.36
40	0, 80	220	24, 51	400	83.48	. 580	185, 38
50	1,25	230	26, 81	410	87, 92	590	192,60
60	1.80	240	29, 23	420	92.47	600	200,00
70	2.45	250	31.75	430	97.17	610	207.60
80	3.21	260	34- 39	440	102,00	620	215, 40
90	4, 06	270	37.14	450	106, 98	630	223, 40
001	5, 01	280	40,00	460	112,08	640	231, 62
011	6,07	290	42.97	470	117.34	650	240, 07
120	7.23	300	46,06	480	122.73	660	248, 73
130	8, 49	310	49, 26	490	128, 27	670	257. 64
140	9,485	320	52.58	500	133.97	680	266, 79
150	11,31	330	56, 02	510	139, 83	690	276, 19
160	12,88	340	59,60	520	145.83	700	285, 86
170	14.56	350	63, 25	530	152,00		
180	16. 33	360	67.05	540	158.33		

Tracciamento delle curve per corde e per

		(Traceren	caroo dorio	Citi to por	corde o por
Raggi	CORDE	FRECCIE	CORDE	FRECCIE	CORDE	FRECCIE
delle	Per uno svilu	uppo di m. 9	Per uno svilu		Per uno svilu	ppo di m. 27
curve	= ad 1	I rotaia	ela 3 rota		- a 3 rots	aie di m. 9
m.	int.	m.	nt.	m-	m.	in.
100	8. 997	0, 101	17 975	0 405	26, 918	0, 910
110	8, 997	0 092	17.980	0 368	26 932	0.827
120	8, 998	0, 084	17 983	0 337	26 943	0.759
130	8 998	0,078	17 986 .	0 311	26, 95 t	0 700
140	8 998	0 072	17 988	0, 289	26, 958	0, 650
150	8, 999	0, 068	17 989	0, 270	,26, 963	0, 607
160	8, 999	0 063	17. 991	0 253	26, 968	0, 561
170	8. 999	0, 060	17. 992	0. 238	26, 971	0, 536
180	8 999	0 056	17. 993	0 225	26, 975	0, 506
190	8 999	0 053	17. 993	0 213	26, 977	0.479
200	8 9 99	0, 051	13,994	0 203	26, 980	0, 456
225	8, 999	0 045	17. 995	0 180	26. 981	0.405
250	8. 999	0 041	17. 996	o 16t	26 984	0 360
275	8 999	0 037	17. 996	0 147	26, 986	0 332
300	-	-	17. 997	0 135	26. 987	0, 304
350	=		17 999	0 116	26 994	0, 261
400	-	-	17 999	101 0	26 995	0, 228
450	=	- 90	17, 999	0, 090	26, 996	0 203
500			18 000	0. 081	26, 997	0, 182
550			18, 000	0, 074	26 997	0, 166
600	10 V = 1		000 ,21	0 068	26. 998	0 151
650			18 000	0, 062	26.999	0, 140
700		100	18 600	0 058	26, 999	. 0, 130
750			18,000	0,054	-	===
800		_==	18 000	0, 051	-	
900		7/	000 81	0 045		
1.000			18,000	0.041	= -	

freccie per rotale di m. 6, 9 e 12

CORDE	FRECCIE	CORDE	FRECCIE	CORDE	FRECCIE	
Per uno svilu a 6 rota n 4 rotaie cd n 3 rotai	ie da m. 6, di m. 9	l'er uno svilup == a 2 rotai e a 1 1 rotai:	e di m. 6	Per uno sviluppo di m. 24 — a 4 rotaie di m. 6 ed a 2 rotaie di m. 12		
ın.	m,	m.	n).	m.	111.	
35 791	1.615	11.993	0, 180	23.942	0 719	
35, 840	1.469	11,994	0 164	23 952	0 654	
35, 865	1 347	11, 995	0. 150	23 960	0.600	
35, 885	1.244	11 996	0, 138	23 966	0 553	
35. 901	1 156	11 996	0, 129	23 971	0 514	
35, 914	1, 089	11, 997	0. 120	23. 974	0.480	
35. 924	1,011	11. 997	o I12	23.978	0.450	
35 933	0.952	11,998	0, 106	23.980	0, 423	
35 940	0.899	11 998	0, 100	23 982	0, 400	
35.946	0, 871	11,998	0.095	23 984	0, 379	
35. 951	0, 810	11.998	0 090	23 986	o 360	
35.953	0.719	11,999	0,080	23. 991	0 320	
35.959	0, 640	11.999	0.072	23.994	0.288	
35.972	0. 590	11.999	0 070	23 995	0, 280	
35 978	0, 540	11,999	0,060	23. 995	0, 240	
35 985	0, 463	_	· · ·	23. 996	0, 212	
35 988	0, 406	_		23.996	0 180	
35. 990	0,360	844	_	23.997	o 160	
35.991	0. 324			23, 998	0, 144	
35.994	0, 295		_	23, 998	0, 131	
35. 995	0, 269	_	_	23 999	0. 121	
35.995	0, 249			23.999	0 111	
35. 996	0. 235	_		23.999	0, 103	
35.998	0.216		_	23, 999	0, 096	
35. 999	0, 203		_	24.000	n, ngo	
35. 999	0,180	_		24, 000	0 080	
36 000	0, 162	_		24. 000	0, 072	
	1		-	1		

Tracciamento delle curve per corde prolungate.

r					
	Valori		Valori		Valori
Rayyi	dì	Raggi	di	Raggi	di
R	y per	R	y per	R	y per
	$x = 5^{-1}$	OK.	$x = 10^{m}$		x=20 M
m,	131.	ın,	iti.	ın.	m,
100	0, 250	220	0 455	800	0, 500
110	0 227	225	0. 444	850	0 470
120	0 208	240	0, 417	900	0. 444
130	0 192	250	0 400	950	0, 420
140	0. 178	260	0. 385	1000	0 400
150	0, 167	275	o 364		
160	0 156	300	0 333		
170	0 147	325	0 311		
180	0 138	350	o. 285		
190	0 132	375	0 293		
200	0, 125	4.00	0, 250		
		425	0. 235		
		450	0 222		
		475	0 211		
		500	0 200		
		550	0, 182		
	7	600	0 166		
		650	- 0 154		
		700	0 143		
		750	0 133		

APPENDICE

APPENDICE

La presente appendice è destinata per uso esclusivo degli uffici ed ha per iscopo di rendere ragione di alcune delle regole pratiche contenute nelle Istruzioni.

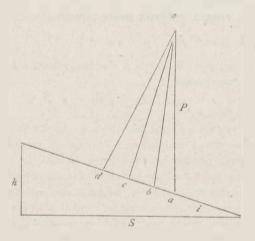
 τ^0 Sopraelevazione della rotaia esterna nelle curve. (Tabelle N. 2 e N. 3).

Il valore della sopraelevazione di una curva di raggio R per una velocità v in minuti secondi è dato teoricamente dalla nota formula:

$$h = \frac{v \cdot S}{s \cdot R} \cdot \dots \cdot (s)$$

dove S=1.534 rappresenta la distanza media fra gli assi delle rotaie dei tipi RA 36 S ed FS con scartamento di m.1.4.575; g=9.81 l'accelerazione della forza di graviti.

L'applicazione pratica di detta formula presenta però una grave difficolta, per il fatto che il valore di v non è costante per tutti i treni che percorrono una determinata curva. Finchè la differenza fra i limiti estremi della velocità si mantenne poco considerevole si potè seguire il sistema di assegnare alla sopraelevazione il valore corrispondente alla velocità del treno più celere, ma tale sistema non può più seguirsi oggi, dopo che le maggiori velocità hanno raggiunti el oltrepassati i cento chilometri all'ora; e ciò sia perchè il valore della sopraelevazione in molti casi supererebbe il limite massimo di 14 o 15 centimetri che la maggior parte delle Amministrazioni ferroviarie hanno ritenuto necessario di stabilire, sia perchè la sopraelevazione corrispondente ai treni più rapidi peggiorerebbe la viabilità dei treni meno veloci con danno del materiale mobile, e non senza pericolo di sviamento dei treni stessi, causa la diminuita pressione delle ruote sulla fila di rotate esterne,


Anche la Amministrazioni estere si preoccuparono della cosa e si trovarono nella necessità di adottare in proposito qualche temperamento. Così la P L M, la quale per la determinazione del valore della sopraelevazione usa la formula empirica $h = \frac{v}{v}$, ha stabilito che la sopraelevazione determinua per un certo valore di v debba mantenersi invariata anche per velocità superiori fino ad un massimo eguale a v + 0.50 v. In altri termini nella suddetta formula si deve considerare che v rappresenti i due terzi della velocità massima

Le Ferrovie Svizzere (Gottardbahn) e l'Unione delle Ferrovie Tedesche valutano la sopraelevazione in base alla formula h=0 dove v è la velocità massima ammessa ed R il raggio della curva, formula che dà per h dei valori assai inferiori a quelli della formula teorica e molto prossimi a quelli della tabella N. 2 a pag. 60.

La velocità massima è fissata dalle Ferrovie Svizzere in chilometri 108 per le linee di pianura ed in chilometri 72 per le linee di montagna: dalle Ferrovie Tedesche è fissata in chilometri 100 indistintamente. Queste ultime Ferrovie però stabiliscono un limite minimo di m. 900 per le cuive da percorrersi colla velocità di 100 chilometri all'ora.

La tabella N. 2 riportata a pag. 60 delle presenti istruzioni venne calcolata sostituendo nella formula teorica (1) della sopraelevazione al valore di v (velocità massima) l'espressione $\sqrt{\frac{v_{i}^2-1}{v_{i}^2-1}}$ dove v_{i} e v_{2} rappresentano rispettivamente la velocità minima e

massima dei treni circolanti sulla curva. Tale espressione rappresenta, con molta approssimazione, la velocità per la quale la risultante del peso di un veicolo e della forza

centrifuga, che in esso si sviluppa durante la corsa, diventa la mediana delle due risultanti analoghe che si hanno nei due casi delle velocità estreme. v_1 e v_2

Infatti sia o il baricentro del veicolo situato sulla curva; o a rappresenti la intensità e la direzione del peso P; o b la risultante del peso e della forza centrifuga nel caso della velocità v_i ; o d analoga risultante nel caso della velocità v_2 ed o c la mediana del triangolo d o b Nei tre casi delle risultanti o b, o c, o d si possono assumere, con molta approssimazione, come valori relativi delle forze centrifughe:

$$a b = \frac{l}{R R}$$

siccome poi si ha b c = c d, ossia a c - a b = a d - a c, così risulta pure:

$$Pi - \frac{gR}{gR} = \frac{R}{gR} - Pi$$

$$\frac{1}{gR}(v^2 + \frac{1}{gR}) = 2Pi = 3P - \frac{1}{gR}$$

da cui si ricava:

$$A \mapsto \frac{\beta_{\mu} \frac{\beta_{\mu} + \alpha_{\mu}}{2}}{2} \dots 0$$

Danque il valore da sostituire nella formula (1) a va per avere una sopraclevazione à corrispondente alla risultante e e (mediana delle risultanti che corrispondono rispettivamente alla velocità minima e massima dei treni circolanti sulla curva) è $\frac{1}{2}$ ossia il valore da sostituire a $v \in \sqrt{\frac{v_i^2 + v_2^2}{2}}$

L'applicazione di una tale sostituzione può ritenersi già sanzionata dalla esperienza per la velocità massima di circa 100 Km, all'ora essendo tale velocità praticata da tempo su tratti di linee per le quali la sopraclevazione delle curve era stata calcolata in base ad una velocità massima di Km. 70.

Per tali tratti di linee i libretti-orari indicano è vero un massimo di velocità di Km. 95 all'ora; ma in effetto tale velocità raggiunge e talvolta supera (benchè di poco) i 100 Km. Tuttavia anche ammesso che la velocità effettiva sia di Km. 97.50 e ritenuta di 25 Km, la velocità dei treni meno celeri, il valore di v da considerarsi per il calcolo della sopraclevazione secondo il concetto sovraesposto è $v = \sqrt{\frac{25^2 + 97.5^2}{25^2 + 97.5^2}} = \text{Km. 71.}$

Per avere poi una idea esatta degli effetti che possono derivare dalla sostituzione di cui si tratta si sono eseguite delle verifiche grafiche dalle quali è risultato che valutando la sopraelevazione delle curve in baso alla formula (2) in nessun caso la risultante del peso e della forza centrifuga di un veicolo in moto si avvicina alla rotaia esterna più di quanto la direzione del peso passante per il baricentro del veicolo formo si avvicina alla rotaia interna.

Oltre le considerazioni sovra esposte si è tenuto presente anche quanto è detto nel « Bulletin de la Commission Internationale du Congrés des chemins de fer » anno 1892 parte II, volume 6º circa le esperienze eseguite a Drouè ed a Noisy-le-Sec sulta circolazione dei veicoli in curve di piccolo raggio senza sopraelevazione o con sopraelevazione limitatissima e quanto è stato espesto dal Sig. Ing. Mariè nei suoi studi recenti sulla influenza di una maggiore o minore sopraelevazione nelle curve. Paragonando i risultati dei calcoli del Marié ottenuti nei diversi casi da lui considerati, se ne deduce che una messa sopraelevazione è meno pericolosa che la sopraelevazione completa quando mancano, come nel maggior numero dei casi, i raccordi parabolici.

2º Raccordi parabolici.

I dati e le formule usati per il calcolo delle tabelle riguardanti il 1º e 2º caso, Tabelle N. 4 e N. 5, sono i seguenti:

Dati: (Tav. II Fig. 5)

TAQ = allineamento del tracciato primitivo.

ABN == arco di circolo di raggio R del tracciato primitivo.

 $C_t B = C_t E - R_t - \text{raggio dell' areo circolare di raccordo } EMB$

OM = parabola di raccordo

x=ascissa di un punto qualunque della curva OM essendo il punto O l'origine delle ordinate.

y = ordinata corrispondente all'ascissa x

q = lunghezza dell'arco AB del tracciato primitivo al quale si sostituisce la curva di raccordo.

 $OA_i = A_i U = p$ = parametro della parabola di raccordo misurata in proiezione sulla retta TA

Formule:

Equazione della parabola $y = \frac{x^3}{12 p R}$ valore di R_i pei valori dati di q e di p

$$+\sqrt{\frac{1}{4}-\frac{p^2}{3q^2}-\frac{p^2}{36R^2}}$$
 = mR

valore di $AA_i = (i - m) R \operatorname{sen}^q$

La formula della parabola si applica da x = o a x = sp (punto M).

In questo punto M si ha:

 $y = \frac{2 p^2}{r^2}$ per l'equazione della parabola, ed $y = \frac{p^2}{r^2} + R_t - \sqrt{R_t^2 - p^2}$ per l'equazione dell'arco di raccordo.

I due valori di y debbono risultare uguali, ciò che ne costituisce la verifica. Equazione dell'arco di raccordo:

$$y = \frac{1}{6R_t} + R_t - \sqrt{R_t^2 - (x - p)^2}$$

La formula dell'arco di raccordo si applica per $x = 2\phi$ (nunto M)

fino a:

 $x = p + R_i \sin \frac{q}{R}$ (punto B)

dove si ha:

$$y = \frac{s}{6R_t} + R_t \left(s - \cos \frac{q}{R} \right)$$

secondo l'equazione dell'arco di raccordo, ed

$$y = R \mid -\cos \frac{\pi}{R}$$

secondo l'equazione dell'arco del tracciato.

Anche questi ultimi due valori debbono risultare uguali ciò che ne costituisce la verifica.

I dati e le formule che hanno servito per il calcolo delle tabelle N. 6 e N. 7 relative ai casi 3° e 4° sono i segnenti:

Dati: (Tav. II fig. 8).

TAQ = allineamento del tracciato primitivo.

ABN = arco di circolo di raggio R del tracciato primitivo.

 $CB_i = CE = R_i =$ raggio dell'arco di cerchio sostituito a quello primitivo.

OM = parabola di raccordo.

x = assissa di un punto qualunque della curva OMB_t essendo il punto O l'origine delle coordinate.

y - ordinata dell'ascissa x.

OA = AU = p = parametro della parabola di raccordo misurato in proiezione sulla retta TQ.

Formule:

Equazione della parabola $y = \frac{x^3}{x^3}$

valore di R, per un dato valore di p

$$R_i = R - \frac{p^2}{6R}$$

La fermula della parabola si applica da x = o ad x = av da cui si ricava:

$$y = \frac{2 p^2}{3 R_1}$$

per l'equazione della parabola, ed

$$y = R - \sqrt{|R_i|^2 - p^2}$$

per l'equazione dell'arco spostato,

I due valori di y debbono risultare eguali, ciò che ne costituisco la verifica,

Formule dell'arco spostato:

$$y = R - \sqrt{(x - p)^2}$$

questa formula si applica da $x = \mathcal{P}$ fino al raggio passante per il mezzo dell'arco del tracciato.

30 Impiego delle rotaie corte nelle curve. Tabelle N. 12 a N. 16.

Per quanto riguarda l'intercalazione delle rotaie corte nella fila interna delle curve gioverà tener presente quanto segue:

Posto:

/ - lunghezza della rotaja normale sulla fila esterna;

d = differenza di lunghezza fra la rotaia normale e quella corta;

s == distanza fra gli assi delle due file di rotale;

R = raggio del binario;

la differenza di sviluppo su di una lunghezza / surà

Per una rotaia all'esterno occorrono:

$$\frac{1}{R} \times s$$
 s./
rotaie corte all'interno, e per N rotaie all'esterno ne

occorrono all' interno :

$$n = \frac{sl}{Rd} N$$

da cui:

Il raggio minimo di intercalazione è quello pel quale si hanno all'interno tutte rotaie corte; in tal caso essendo

$$-\frac{N}{n}$$

si ha :

$$R = -\frac{sl}{d}$$

4 Tracciamento per ascisse e ordinate. Tabella N. 20.

Le ordinate sono state calculate colla formula $y = R \sqrt{R^2 - R^2}$

5º Tracciamenti per corde e per freccie. Tabella N. 21.

I dati e le formule usate per il culcolo, sono i seguenti:

Posto;

h = sviluppo della curva in metri;

A = raggio della curva in metri;

 $\alpha = \frac{90 \text{ h}}{2}$ metà dell'angolo al centro;

c -- corda;

f - freccia;

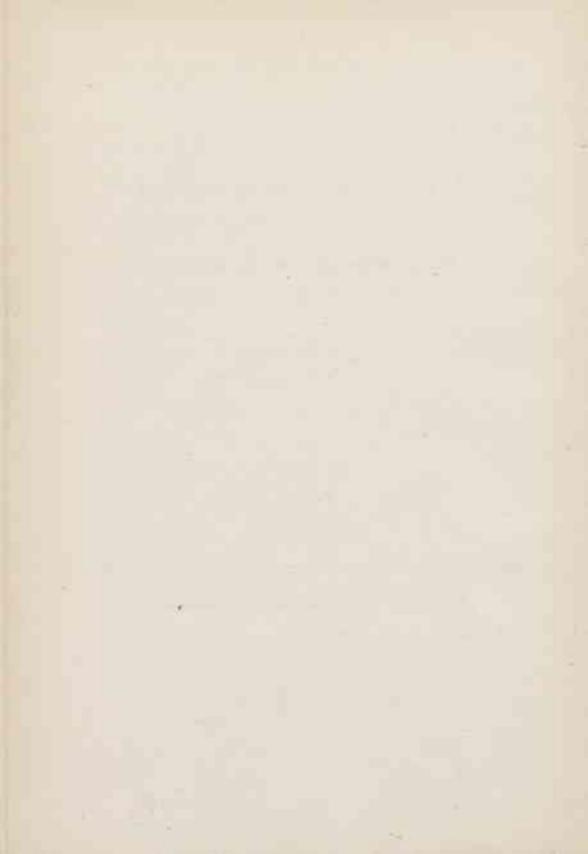
si Int

$$\varepsilon = 2 \ (R \ sen \ \alpha).$$

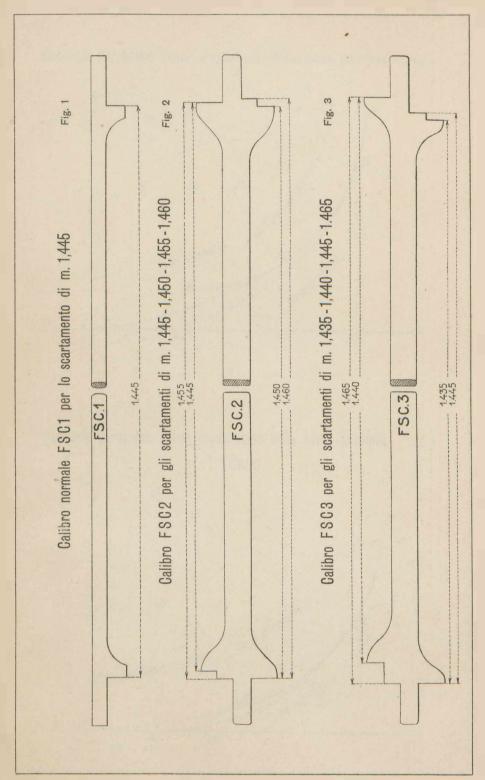
cd

oppure:

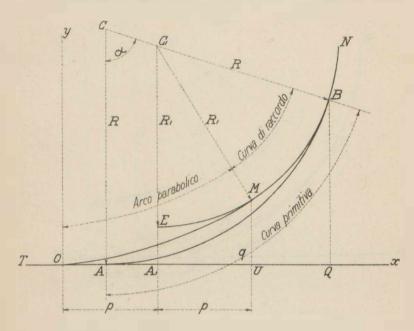
$$\epsilon = 2 \frac{TS}{R}$$


cil

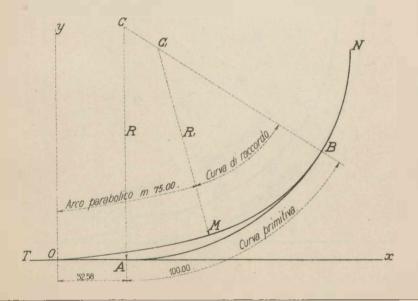
nelle quali T= tangente naturale ed S= seconte naturale del semi angolo al centro,


6º Tracciamento per corde prolungate. Tabella N. ==

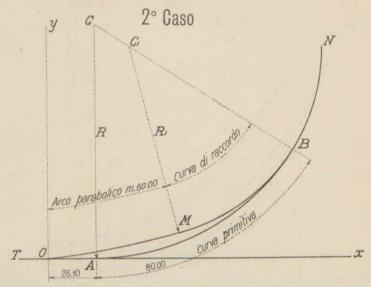
valori y della tabella sono calcolati colla formula y — $\frac{1}{R}$



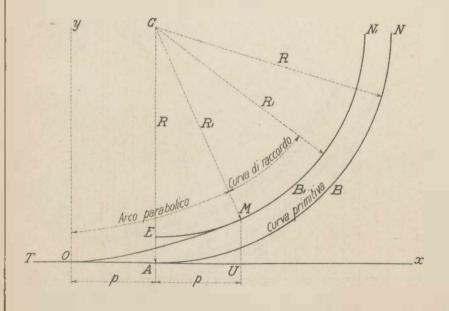
TAVOLE

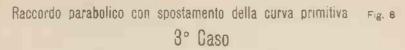


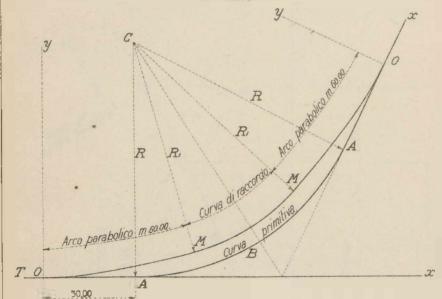
Raccordo parabolico senza spostamento della curva primitiva Fig. 4



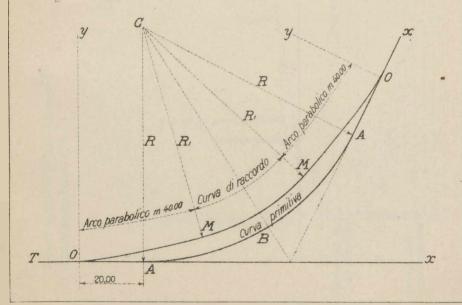
Raccordo parabolico senza spostamento della curva primitiva Fig. 5

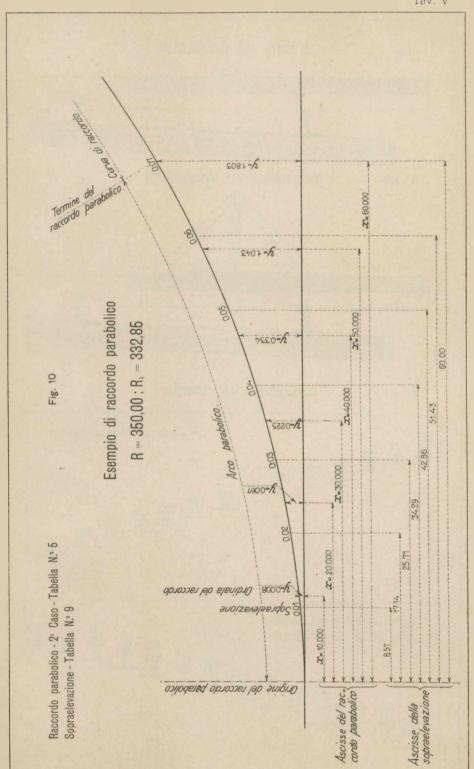

1º Caso

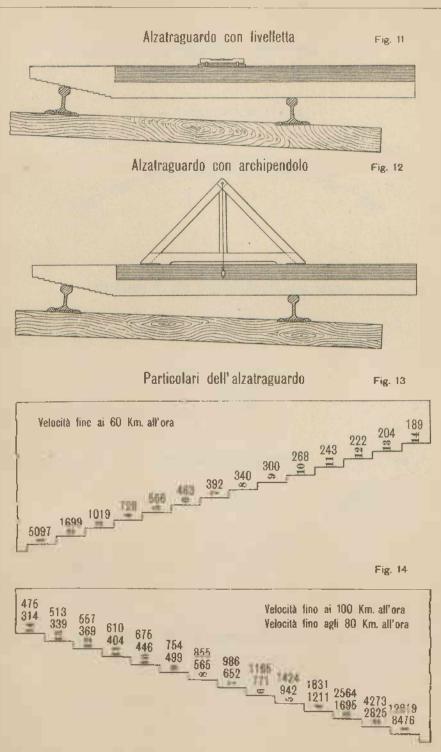



Raccordo parabolico senza spostamento della curva primitiva Fig. 6

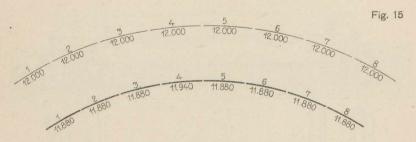
Raccordo parabolico con spostamento della curva primitiva Fig. 7

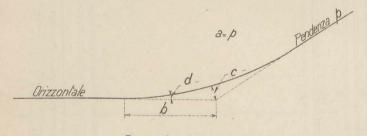






Raccordo parabolico con spostamento della curva primitiva Fig. 9


4º Caso



Disposizione delle rotaie da m. 12,00, 11,94 ed 11,88 in una curva di m. 350 di raggio

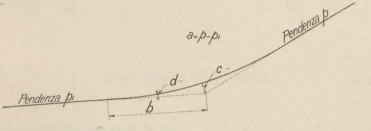
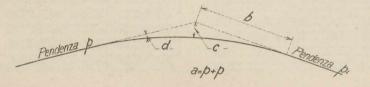
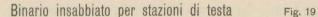
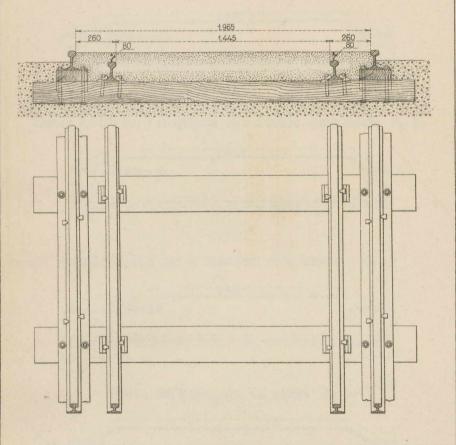

Raccordo di una orizzontale con una ascesa

Fig. 16

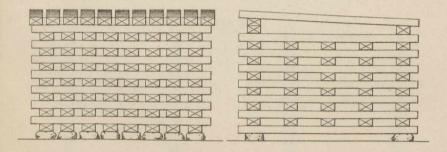

Raccordo di due ascese

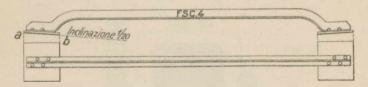

Fig. 17



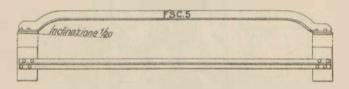
Raccordo di una ascesa con una discesa

Fig. 18





Accatastamento delle traverse

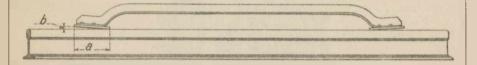
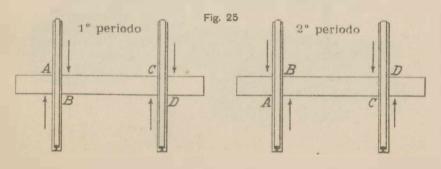
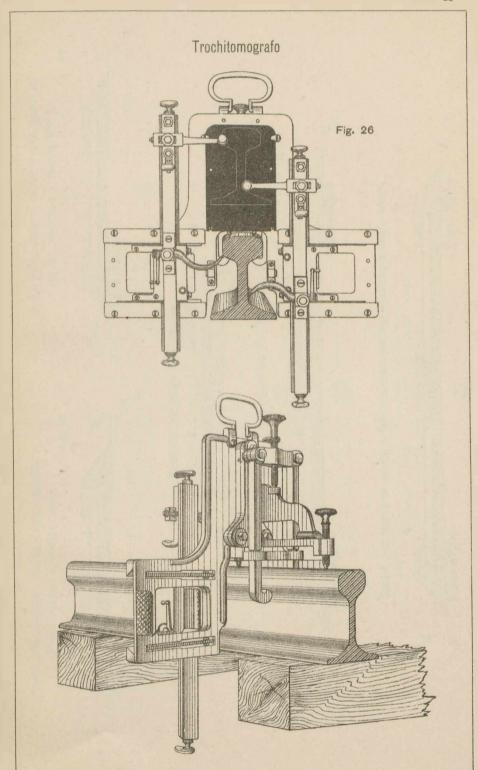
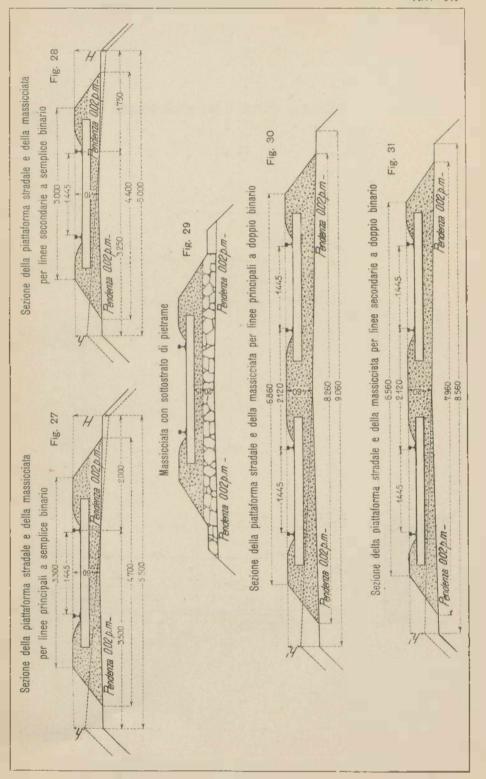

Fig. 20

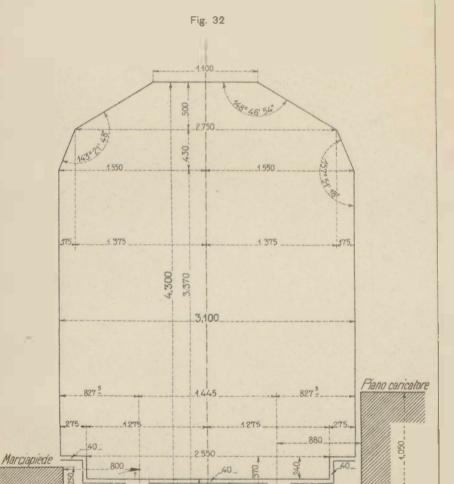
Calibro FSC4 per l'intagliatura delle traverse con piastre piane Fig. 21

Calibro FSC5 per l'intagliatura delle traverse senza piastre Fig. 22

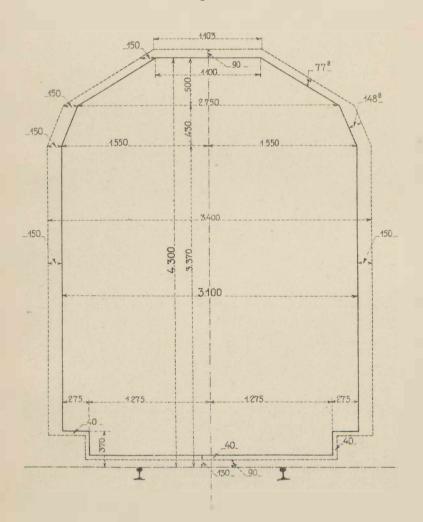
Calibro FSC6 per la spianatura delle traverse Fig. 23

Verifica dell'inclinazione dei calibri Fig. 24


Figure schematiche per il rincalzamento delle traverse

Sagoma limite per il servizio cumulativo



130_

250_

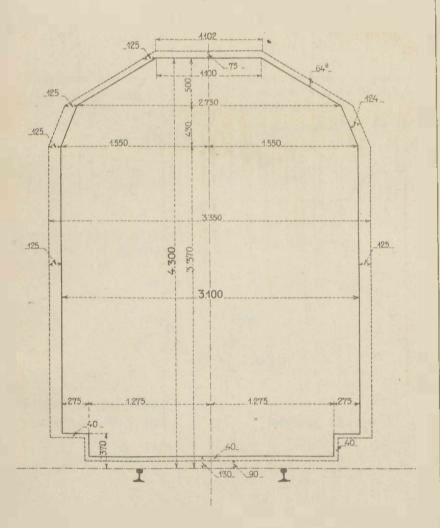
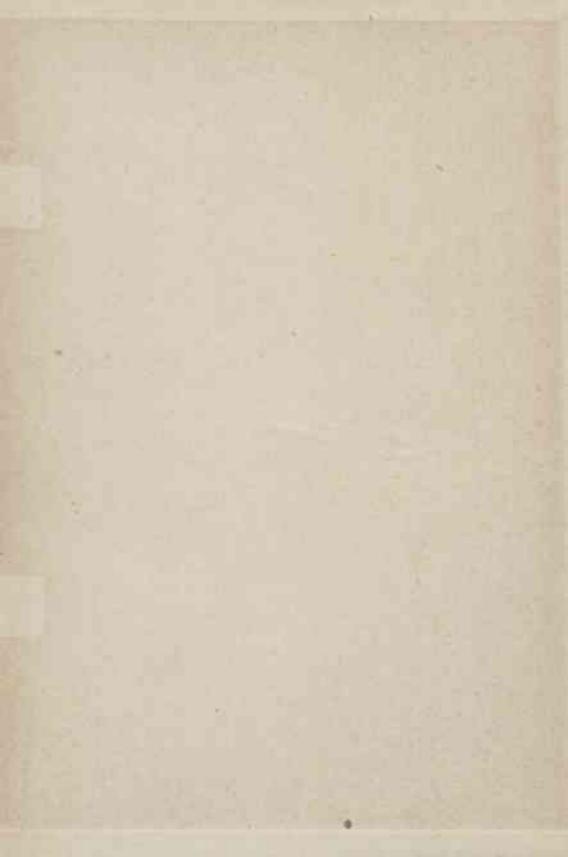

Sagoma limite con la minima zona libera per i nuovi impianti fissi

Fig. 33



Sagoma limite con la minima zona libera per gli impianti fissi esistenti

Fig. 34

Tracciamento per ascisse e ordinate Tracciamento delle curve per ascisse e ordinate di una curva di m. 280 di raggio 15.00 5.00 Fig. 35 Ascissa JC 0.18 Punto di langenza Fig. 36 Tracciamento delle curve Tracciamento per corde e per freccie di una curva di m. 250 di raggio per corde e per freccie con rotaie da m. 9 Fig. 37 Fig 38 Corda 35.959 Tracciamento delle curve Tracciamento per corde e per freccie per corde prolungate di una curva di m. 250 di raggio con rotaie da m. 12 Fig. 40 Fig. 39 A Tracciamento per corde prolungate di una curva di m. 100 di raggio Rettificazione delle curve Fig. 41 Fig. 42

